Name: Enrolment No:		VPES		
LIIIOI	ment no.	UNIVERSITY OF TOMORROW		
		UPES		
	Ene	d Semester Examination, Dec 2024		
Programme Name: MSc Physics Semester: I				
Course Name: Analog Electronics Time: 03 hrs				
	e Code: ECEG7034	Max. Marks: 100		
	f page(s):2			
Instru	ctions: [a] A scientific calculator is	s allowed. [b] Symbols have their usual meanings		
		SECTION A Answer all questions		
S.No.			Marks	CO
Q 1	Derive the expression for the intrin	nsic carrier concentration (n _i) in a semiconductor.	5	CO1
Q 2	For a reverse-biased P-N junction, derive the expression for junction capacitance (Cj) and explain how it varies with the applied reverse voltage.		5	CO2
Q 3	A silicon P-N junction diode has a reverse saturation current of $I_s = 10^{-12}A$ at 300K. Calculate the forward current when the diode is forward-biased with a voltage of 0.7 V. (Use kT/q=0.0259V).		5	CO3
Q 4	What is Op-Amp. Briefly describe the five practical applications of Op-Amps in the electronics industry.		5	CO4
		SECTION B		
	Answer a	all questions (Q 5 has an internal choice)		
Q 5	In a silicon sample at 300 K, the e	lectron mobility μ_n is 1350 cm ² /V-s, and the hole mobility		
Q J	μ_p is 480 cm ² /V-s. An electric field drift current density J _{drift} if the elec p=10 ¹⁵ cm ^{-3.}	E of 1000 V/cm is applied across the sample. Calculate the ctron concentration $n=10^{16}$ cm ⁻³ and the hole concentration OR tionship between diffusion coefficient and mobility) for a	10	CO1
Q 6	Sketch the I-V characteristics of application of LEDs in optoelectro	an LED. Explain how LEDs emit light, and describe one onics.	10	CO2
Q7		emitter resistor R_E in a common-emitter amplifier circuit. ribute to the stability of the amplifier's operating point?	10	CO3
Q8		feedback capacitor, $C=1\mu F$ and an input resistor, $R=100k\Omega$. is applied, find the output voltage V_{out} as a function of time.	10	CO4
			1	1

SECTION C Answer any one question (Question 10 has an internal choice)					
Q 9	What is FET? What are the differences between FET and BJT? Give the construction and working of n channel JFET with a proper diagram. Explain the output characteristics and transfer characteristics of n-channel JFET.	2+5+7 +6	CO3		
Q 10	 [a] What is feedback? Explain the negative feedback with a diagram. Derive the expression of its voltage gain. [b]An inverting amplifier circuit is built with an operational amplifier, where the input resistor R_{in}= 5kΩ and the feedback resistor R_f= 50 kΩ. If the input voltage V_{in}= 0.5V, calculate the output voltage V_{out}. Assume an ideal op-amp. OR [a] Explain how an Op-Amp works as an integrator. Provide an example of a real-world 	tor the 10+10 CO4			
	 [a] Explain now an Op-Amp works as an integrator. Provide an example of a real-world application [b] Derive the Barkhausen criterion for oscillation and explain why it is necessary for oscillator circuits 				