Name: Enrolmo	ent No:	S			
UPES					
End Semester Examination, December 2024Course:Integral Equations and Calculus of VariationsSemester: IProgram:M. Sc. MathematicsTime <th: 03="" hrs.<="" th="">Course Code:MATH7043Max. Marks: 100Instructions:Attempt all questions from Section A (each carrying 4 marks); attempt all questions from Section B (Each carrying 10 marks) and attempt all questions from Section C (each carrying 20 marks). Question 7 and 10 have internal choice.</th:>					
SECTION A (50m 4M=20M embrs)					
S. No.	(3QX4IVI-20IVIAIKS)	Marks	CO		
Q 1	Define linear and non-linear integral equations with suitable examples.	4	CO1		
Q 2	Compute iterated kernels (or functions) $K_1(x,t)$ and $K_2(x,t)$ for the integral equation $y(x) = x + \int_0^{1/2} y(t) dt$.	4	CO2		
Q 3	Show that the integral equation $y(x) = \lambda \int_0^1 \sin \pi x \cos \pi t y(t) dt$, does not possesses any characteristic number.	4	CO2		
Q 4	Find the extremals of the functional $\int_{x_0}^{x_1} [16y^2 - (y'')^2 + x^2] dx$.	4	CO3		
Q 5	State Hamilton's principle of least action.	4	CO4		
SECTION B					
(4Qx10M= 40 Marks)					
Q6	Form an integral equation corresponding to the differential equation given by $\frac{d^2y}{dx^2} + x\frac{dy}{dx} + y = 0,$ with the initial conditions $y(0) = 1, y'(0) = 0.$	10	CO1		
Q 7	Find the Neumann series for the solution of the Volterra integral equation $y(x) = 1 + x + \lambda \int_0^x (x - t) y(t) dt.$				
	OR With the aid of the resolvent kernel, find the solution of the integral equation $y(x) = \sin x + 2 \int_0^x e^{x-t} y(t) dt$.	10	CO2		

Q 8	On what curves can the functional			
	$V[y(x)] = \int_{0}^{\pi} [y'^2 - y^2 + 4y \cos x] dx; \ y(0) = 0, y(\pi) = 0$ be extremized?	10	CO3	
Q 9	Discuss the Jacobi and Legendre conditions for extremum for the functional $I[y(x)] = \int_{0}^{1} \left[\frac{1}{2}x^{2}y'^{2} - 2xyy' + y\right] dx; \ u(0) = 0,$ where $u = \delta y$. Further, derive the extremal satisfying $u(1) = \frac{1}{2}$ and emanating from (0, 1). SECTION-C	10	CO4	
(2Qx20M=40 Marks)				
Q 10	Transform the following boundary value problem $\frac{d^2y}{dx^2} + xy = 1; y(0) = 0, y(1) = 0,$ into an integral equation. Also, recover the boundary value problem from the integral equation obtained. OR Solve the Fredholm integral equation $y(x) = 1 + \lambda \int_{0}^{1} (x + t) y(t) dt,$ by the method of successive approximations to the third order.	20	CO2	
Q 11	(i) Determine the extremal of the functional $I[y(x)] = \int_{0}^{\frac{\pi}{4}} [y''^2 - y^2 + x^2] dx,$ under the conditions $y(0) = 0, y'(0) = 1, y\left(\frac{\pi}{4}\right) = y'\left(\frac{\pi}{4}\right) = \frac{1}{\sqrt{2}}.$ (ii) Prove that the extremal of the isoperimetric problem $I[y(x)] = \int_{1}^{4} y'^2 dx,$ with $y(1) = 3, y(4) = 24$ subject to the condition $\int_{1}^{4} y dx = 36$ is a parabola.	10+10	CO4	