Name: Enrolm	Name: Enrolment No:		S	
Program: M.Sc. (Mathematics) Time			emester: I ime: 03 hrs. Max. Marks: 100 ere are internal choices in	
		ΓΙΟΝ Α =20Marks)		
S. No.		- 2 017 101 K5)	Marks	СО
Q 1	Show that first-order differential equation $\left \frac{dy}{dx}\right + y + 1 =$ has no (real) solutions.	= 0	4	CO1
Q 2	Apply basic existence and uniqueness theorem to show that the following initial value problem has a unique solution on some sufficiently small interval $ x - 1 \le h$ about $x_0 = 1$: $\frac{dy}{dx} = x^2 \sin y; y(1) = -2.$		4	CO1
Q 3	Determine whether $x = 0$ is an ordinary period of the differential equation, $2x^2 \frac{d^2y}{dx^2} - x \frac{dy}{dx} + (x - x)^2 \frac{d^2y}{dx^2} + (x - x$		4	СОЗ
Q 4	The roots of the auxiliary equation, corresp homogeneous linear differential equation w 2, 2, 2, 2, 2, 2, 2, $3 + 4i$, $3 - 4i$, $3 + 4i$, $3 -$ Write the general solution.	ith constant coefficients are	4	CO2
Q 5	Determine the nature of the critical point (0 $\frac{dx}{dt} = 2x + 4y,$ $\frac{dy}{dt} = -2x + 6y$		4	CO5

	SECTION B		
0.6	(4Qx10M= 40 Marks)		
Q 6	Find the general solution of the Cauchy-Euler differential equation, $x^{2} \frac{d^{2}y}{dx^{2}} - x \frac{dy}{dx} + 2y = x \log x, \text{ assume } x > 0.$	10	CO2
Q 7	Find the power series solution of the following differential equation about an ordinary point $x = 0$, $(x^2 + 1)\frac{d^2y}{dx^2} + x\frac{dy}{dx} - xy = 0.$	10	CO3
Q 8	Consider the two nonlinear systems, $\frac{dx}{dt} = 8x - y^{2},$ $\frac{dy}{dt} = -6y + 6x^{2}.$ Determine the type and stability of each of the critical points.	10	CO5
Q 9	Reduce the following differential equation into normal form $\left(\frac{d^2y}{dx^2} + y\right)\cot x + 2\left(\frac{dy}{dx} + y\tan x\right) = \sec x.$ Hence obtain the general solution.ORTransform the differential equation, $\cos x \frac{d^2y}{dx^2} + \sin x \frac{dy}{dx} - 2y\cos^3 x = 2\cos^5 x,$ into the one having z as independent variable, where $z = \sin x$ and solve it.		CO2
	SECTION-C (2Qx20M=40 Marks)		
Q 10	Using Frobenius method, solve the Bessel differential equation, $x^{2} \frac{d^{2}y}{dx^{2}} + x \frac{dy}{dx} + (x^{2} - n^{2})y = 0,$ taking 2n as nonintegral. OR Use the method of Frobenius to find the solution near $x = 0$ of the differential equation, $x(1 - x)\frac{d^{2}y}{dx^{2}} - 3x\frac{dy}{dx} - y = 0.$	20	CO3

Q 11	Find the eigenvalues and the corresponding eigenfunctions of following boundary value problem,		
	$\frac{d^2 X}{dx^2} + \lambda X = 0, X(0) = 0 \text{ and } \left[\frac{dX}{dx}\right]_{x=L} = 0.$	20	CO4