Name:

Enrolment No:

UNIVERSITY OF PETROLEUM AND ENERGY STUDIES

End Semester Examination, Dec 2024

Course: Linear Algebra Program: M. Sc. Mathematics **Course Code: MATH 7041**

Semester: I Time: 03 hrs. Max. Marks: 100

Instructions: All questions are compulsory. There is an internal choice in Q9 and Q11.

SECTION A (5Qx4M=20Marks)				
S. No.		Marks	CO	
Q1	Identify $n \in \mathbb{Z}_{\geq 0}$ such that $v^T v$ has n linearly independent columns where v^T is transposed vector of some nonzero $1 \times n$ vector $v \in \mathbb{R}^n$.	4	CO1	
Q2	Find the nullity of matrix $f(A)$ where $f(x)$ is a real polynomial defined as $f(x) = (x - \delta)(x^3 - \alpha x^2 + \beta x - \gamma) \text{ and matrix } A = \begin{bmatrix} 0 & 0 & \gamma \\ 1 & 0 & -\beta \\ 0 & 1 & \alpha \end{bmatrix}.$	4	CO2	
Q3	Suppose $G(n)$ = number of $n \times n$ real matrices T such that $T^2 + I_n = O_n$ (where I_n is identity and O_n is null matrix in \mathbb{R}^n). Determine $G(2025)$.	4	CO3	
Q4	Determine the Jordan canonical form of the matrix $A = \begin{bmatrix} 2 & 0 & 0 \\ 2 & 2 & 0 \\ 3 & 2 & 1 \end{bmatrix}$. Is A diagonalizable?	4	CO3	
Q5	Find the value of $ f(t) _1$ where $f(t) = e^{- t } \in C[-1,1]$.	4	CO4	
	SECTION B (4Qx10M= 40 Marks)			
Q 6	Obtain the matrix representation $[T]_{\mathcal{B}}$ with respect to the ordered basis $\mathcal{B} = \{(1,0,1), (0,1,1), (1,1,0)\}$ for the linear map $T: \mathbb{R}^3 \to \mathbb{R}^3$ defined as $T(x, y, z) = (x + y, y - z, z - x)$. Is <i>T</i> bijective on \mathbb{R}^3 ? Justify your answer.	10	CO1	
Q7	Prove that if a subspace $W \subset V$ is invariant under the linear map $T: V \longrightarrow V$ then W is invariant under $f(T)$ for any polynomial $f(t)$.	10	CO2	

Q8	Suppose A is a real matrix of order $n \times n$ satisfying $A^3 = A$. Determine the				
Qo		10	CO3		
	smallest set S such that $trace(A) \in S$.				
Q9	Consider the set $S = \{(1,1,-1), (1,1,1)\} \subset \mathbb{R}^3$. Find the orthogonal complement				
	S^{\perp} in \mathbb{R}^3 . Also, show that S^{\perp} is a subspace of \mathbb{R}^3 .				
	OR		CO4		
	Prove that the vector space of continuous functions $C[a, b]$ forms an inner product	10			
	space with the usual inner product defined as	10			
	$\langle f,g \rangle = \int_{a}^{b} f(t)g(t)dt$ where $f,g \in C[a,b]$				
	SECTION-C				
(2Qx20M=40 Marks)Q10Consider the linear transformation $T: \mathbb{R}^3 \to \mathbb{R}^3$ whose matrix representation is					
QIU					
	$\begin{pmatrix} 3 & -2 & 1 \\ -2 & 6 & -2 \\ 1 & 2 & 2 \end{pmatrix}$	20			
	$\begin{pmatrix} 1 & -2 & 3 \end{pmatrix}$		CO3		
	(i) Find the (generalized) eigenspaces of \mathbb{R}^3				
	(ii) Find all <i>T</i> -invariant subspaces <i>W</i> such that $W \subset \mathbb{R}^3$.				
Q11	Consider the basis $S = \{(3,1), (2,2)\}$ in the inner product space \mathbb{R}^2 equipped with				
	the conventional Euclidean inner product. Normalize the vectors of S using Gram-	20	CO4		
	Schmidt orthonormalizing process.				
	OR				
	Obtain an orthonormal basis from the given basis $\left\{ \begin{bmatrix} 1 & -1 \\ -1 & 1 \end{bmatrix}, \begin{bmatrix} 1 & 1 \\ 1 & 1 \end{bmatrix} \right\}$ in the				
	vector space of all 2×2 real matrices $\mathcal{M}(2, \mathbb{R})$ equipped with the inner product				
	defined by $\langle A, B \rangle = trace(B^T A)$, where B^T is the transposed matrix B .				
t			1		