	Name:				
Enrolment No:					
	UPES				
Progr	END Semester Examination, December 2 amme Name : M.Sc. (Mathematics)	024 Semester	: I		
Course Name:Real AnalysisTinCourse Code:MATH7040Material					
		Max. Marks			
Nos. o	of page(s) : 02				
Instru	All questions are compulsory. There is an interna	ll choice in Q9 and	Q11.		
SECTION A (4 Marks * 5 = 20 Marks) Answer all questions					
S. No.	,	Marks	СО		
Q 1	Consider the series of functions				
	$\sum_{n=1}^{\infty} \cos(nx^2)$		GO		
	$\sum_{n=1}^{\infty} \frac{\cos(nx^2)}{n(n+1)}, x \in \mathbb{R}$	4	CO 1		
	Identify the uniform convergence of the series.				
Q 2	Find lower Riemann sum and upper Riemann sum of the function				
	$f(x) = \begin{cases} -5 & \text{if } x \in \mathbb{Q} \\ 5 & \text{if } x \notin \mathbb{Q} \end{cases}.$	4	CO2		
	$\int (x) - \{5 if \ x \notin \mathbb{Q} \}$				
Q 3	Determine the radius of convergence and the exact interval of con-	ivergence			
	of the power series	4	CO3		
	$\sum (n+1)x^n$	-	co.		
	$\sum \frac{(n+1)x^n}{(n+2)(n+3)}.$				
Q 4	Check whether the following function is differentiable at $(0,0)$ or $\frac{1}{100}$	not?			
	$f(x,y) = \begin{cases} \frac{xy}{\sqrt{x^2 + y^2}} & if(x,y) \neq (0,0) \\ 0 & if(x,y) = (0,0). \end{cases}$	4	CO ²		
	$f(x,y) = \begin{cases} \sqrt{x^2 + y^2} \\ 0 & if(x,y) = (0,0) \end{cases}$	-	0		
	(0,0) = (0,0).				
Q 5	Let $f_n(x)$ be given by				
	$f_n(x) = \frac{x^{2n}}{1 + x^{2n}}, x \in \mathbb{R}; n \in \mathbb{N}$	4	CO		
	$J_n(x) = \frac{1}{1 + x^{2n}}, x \in \mathbb{N}, n \in \mathbb{N}$				
	find the limit function $f(x)$.				

	SECTION B (10 Marks * 4 = 40 Marks)		
	Answer all questions. There is an internal choice in Q9.		1
Q 6	By giving an example, show that the conditions of Young's theorem and	10	CO4
	Schwarz's theorem are sufficient but not necessary.	10	004
Q 7	Test the convergence of the series		
	$1 + \frac{x}{2} + \frac{2!}{3^2}x^2 + \frac{3!}{4^3}x^3 + \frac{4!}{5^4}x^4 + \cdots$	10	CO3
	Also, find the domain of convergence.		
Q8	Investigate for the pointwise and uniform convergence of the sequence of	10	
	functions given by $f_n(x) = \frac{n^2 x}{1+n^3 x^2}$; $x \in [0,1]$.		CO1
Q 9	Show that $f(x) = k$ (constant) is Riemann-integrable in $[0, \frac{\pi}{2}]$		
	OR Prove that a continuous function $f : [a, b] \rightarrow R$ on a compact interval is	10	CO2
	Riemann integrable.		
	SECTION C		
	(20 Marks * 2 = 40 Marks) Answer all questions. There is an internal choice in Q11.		
Q 10	If		
	$\sum_{n=1}^{\infty} \frac{1}{n^2} = \frac{\pi^2}{6}$ Then, find the value of $\sum_{n=1}^{\infty} \frac{1}{(2n-1)^2}.$	20	CO3
Q 11	Show that for the function $f: \mathbb{R}^2 \to \mathbb{R}$ defined by $f(x, y) = \begin{cases} \frac{xy^2}{x^2 + y^4} & \text{if } (x, y) \neq (0, 0) \\ 0 & \text{if } (x, y) = (0, 0) \end{cases}$ the directional derivatives exist for all directions at the point (0, 0) but the function is not continuous at (0, 0). Determine whether the function $f(x, y) = \begin{cases} \frac{x^3 - y^3}{x^3 + y^3} & \text{if } (x, y) \neq (0, 0) \\ 0 & \text{if } (x, y) = (0, 0) \end{cases}$	20	CO4
	is differentiable or not at (0,0). Also find $f_x(x, y)$ and $f_y(x, y)$ at (0,0).		