Name:

Enrolment No:

UPES

End Semester Examination, December 2024

Course: Mathematical Statistics Program: M.Sc. Mathematics Course Code: MATH7039 Semester: I Time: 03 hrs. Max. Marks: 100

Instructions: Attempt all the questions.

SECTION A (5Qx4M=20Marks)				
S. No.		Marks	СО	
Q 1	Let <i>X</i> be a gamma random variable with parameters α and λ . Calculate Var[<i>X</i>].	04	CO1	
Q 2	The mean weight loss of $n = 16$ grinding balls after a certain length of time in mill is 3.42 grams with a standard deviation of 0.68 grams. Construct a 99% confidence interval for the true mean weight loss of such grinding balls under the stated conditions.	04	CO3	
Q 3	The time for a super glue to set can be treated as a random variable having a normal distribution with mean 30 seconds. Find its standard deviation if the probability is 0.2 that it will take on a value greater than 39.2 seconds.	04	C01	
Q 4	Coefficient of correlation between X and Y is 0.3. Their covariance is 9 and variance of X is 16. Find the standard deviation of Y .	04	CO2	
Q 5	Suppose we have a random sample of size $2n$ from a population denoted by X , $E[X] = \mu$ and $Var[X] = \sigma^2$. Let $\overline{X}_1 = \frac{1}{2n} \sum_{i=1}^{2n} X_i$, and $\overline{X}_2 = \frac{1}{n} \sum_{i=1}^n X_i$, be two estimators of μ . Which one is better? Provide a proper justification.	04	CO3	
	SECTION B		1	
	(4Qx10M= 40 Marks)			

Q 6	Suppose that the cumulative distribution function of the random variable X is given by $F(x) = 1 - e^{-x^2}$, $x > 0$. Evaluate		
	(a) $P(X > 2)$; (b) $P(1 < X < 3)$; (c) $E[X]$.	10	CO1
sQ 7	Fit a simple linear regression model (Y on X) as well as (X on Y) to the data on salt concentration and road way area denoted by Y and X respectively, given as follows:-	10	CO2
	Y 3.8 5.9 14.1 10.4 14.6 14.5 15.1 11.9 15.5 9.3 X 0.19 0.15 0.57 0.4 0.7 0.67 0.63 0.47 0.75 0.6		
Q8	Find the correlation coefficient for the given data		
	$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	10	CO2
Q9	If the joint density function of X and Y is given by $f(x,y) = \begin{cases} xy, & 0 < x < 1, & 0 < y < 2, \\ 0, & otherwise, \end{cases}$ (a) Find the marginal density function of both X and Y; (b) Are X and Y independent; (c) Compute the conditional density X given that $Y = y$; OR With $\Phi(x)$ being the probability that a normal random variable with mean 0 and variance 1 is less than x, which of the following are true: (a) $\Phi(-x) = \Phi(x)$ (b) $\Phi(-x) + \Phi(x) = 1$ (c) $\Phi(-x) = 1/\Phi(x)$ SECTION-C	10	CO1
	(2Qx20M=40 Marks)		1
Q 10	Consider the probability density function $f(x) = \frac{1}{\theta} x e^{-x^2/\theta}, \ 0 \le x < \infty, 0 < \theta < \infty.$ (a) Show that $E[X^2] = 2\theta$. Use this information to construct an	20	CO3
	 (a) Show that <i>B</i>[<i>X</i>] = 20. Use this information to construct an unbiased estimator for <i>θ</i>. (b) Find the maximum likelihood estimator of <i>θ</i>. 		

Q 11	Suppose it is known that the IQ scores of a certain population of adults are approximately normally distributed with standard deviation, 15. A simple random sample of 25 adults drawn from this population had a mean IQ score of 105. On the basis of these data can we conclude that the mean IQ score for population is not 100? Let the probability of committing a Type-I error be 0.05. Calculate P-value and justify your conclusion.		
	OR	20	CO4
	The following data are the oxygen uptakes (milliliters) during incubation of a random sample of 15 cell suspensions: 14.0, 14.1, 14.5, 13.2, 11.2, 14.0, 14.1, 12.2, 11.1, 13.7, 13.2, 16.0, 12.8, 14.4, 12.9		
	Do these data provide sufficient evidence at the 0.5 level of significance that the population mean is not 12 ml? Assume normality.		