Name: Enrolment No:		UNIVERSITY OF TOMORROW			
UPES End Semester Examination, December 2024 Course: Advanced Abstract Algebra Program: M.Sc. Mathematics Course Code: MATH7038 Instructions: 1. This question paper contains 11 questions. 2. Attempt all questions from Section A (each carrying 4 marks). 3. Attempt all questions from Section B (each carrying 10 marks).			Semester : I Time : 03 hrs. Max. Marks: 100). Ouestion 9 has an		
 internal choice. 4. Attempt all questions from Section C (each carrying 20 marks). Question 11 has an internal choice. 					
S. No.	(5Qx4	M=20Marks)	Marks	СО	
Q 1	Find the irreducibility of the polynomial $f(x) = x^3 + 2x^2 + 5x + 1$ over \mathbb{O} .		4	CO2	
Q 2	State the First Isomorphism Theorem for modules.		4	CO3	
Q 3	Find the splitting field of $f(x) = x^2 + 1$ over \mathbb{Q} .		4	CO4	
Q 4	Define algebraic extension of a field and provide an example.		4	CO4	
Q 5	State Fundamental Theorem of Galois Theory.		4	CO4	
SECTION B					
0.6	(4Qx10)	M= 40 Marks)			
Qo	Let <i>F</i> be a field of order 4090. Find the h	uniber of proper subfields of F.	10	CO4	
Q 7	Prove that a map $\phi: M \to N$ is an R-model if $\phi(rx + y) = r\phi(x) + \phi(y)$ for all x,	lule homomorphism if and only $y \in M$ and for all $r \in R$.	10	CO3	
Q 8	Let $\phi : M \to N$ be an <i>R</i> -module homomory is a submodule of N.	orphism. Then, prove that $\phi(M)$	10	CO3	
Q 9	If a group of order 5 ² . 2.3 has no normal subgroups, then find the number of Sylow 5-subgroups. OR If $\sigma = (1524)$ and $\tau = (142)(35)$, then find the order of $\sigma\tau$ in S_{τ} .		10	CO1	
SECTION-C (2Qx20M=40 Marks)					
Q 10	Let $N_1, N_2, \dots N_k$ be submodules of the <i>R</i> -following are equivalent.	module <i>M</i> . Then, prove that the	20	CO3	

	i. $N_j \cap (N_1 + N_2 + \dots + N_k) = 0$ for all $j \in \{1, 2, \dots, k\}$. ii. Every $x \in N_1 + N_2 + \dots + N_k$ can be written uniquely in the form $a_1 + a_2 + \dots + a_k$ with $a_i \in N_i$.		
Q 11	If <i>G</i> is a group of order pq , where <i>p</i> and <i>q</i> are primes, $p < q$ and <i>p</i> does not divide $q - 1$, then prove that <i>G</i> is cyclic. OR Prove that i. $Z(G)$, center of a group <i>G</i> is a subgroup of <i>G</i> and it is normal. ii. every subgroup of an abelian group is normal.	20	CO1