Name:		S	
Enrolm	ent No:		
	UPES		
	End Semester Examination, December 2024		
		Semester: I	
		Time: 03 hrs.	
Course	Code: CHEM7062	Max. Marks:	100
Instruc	tions:		
	• Do not write anything else on the question paper except your name and ro	ll number.	
	• Use of scientific calculator is allowed.		
	 Attempt all the parts of a question at one place only. Internal choice is giv CO1, CO2, & CO3 in the last column stand for course outcomes and are f 		
	SECTION A	of official use o	iiiy.
	(5Qx4M=20Marks)		
S. No.		Marks	СО
Q 1	Which of the following are eigenfunctions of d/dx?	4	CO1
	(a) Ae^{-ax} , (b) x^2 , (c) B cos nx, (d) cosx + sinx	-	
Q 2	State whether true or false with justification:		
	(a) the lowest energy state of a particle in a three-dimensional cubic box is triply degenerate.	4	CO1
	(b) x cos x is an even function		
Q 3	Derive the commutator of the following		
	(a) $[x, p_x^2]$	4	CO1
0.4	(b) $[x^2, d/dx]$		
Q 4	What are linear and Hermitian operators?	4	CO1
Q 5	State and explain Born-Oppenheimer approximation. Discuss its significance.	4	CO2
	SECTION B		
	(4Qx10M= 40 Marks)		
Q 6	The wave function for a quantum mechanical particle in a one-		
	dimensional box of length 'a' is given by $\psi = B \sin \frac{2\pi x}{a}$. Find the		
	normalization constant B and then calculate the value of B for a box of	10	
	length 100 nm?	10	CO3
	OR Derive the expression of wavefunction and energy for particle confined		
	in a 3D box.		
Q 7	Find the ground state energy of a particle confined to one dimensional		
	box of length 'a' using variation theorem.	10	CO2
	Use the trial function $\varphi = x(a-x)$.		

Q 8	 (a) State and explain the postulates of quantum mechanics. (b) Consider a diatomic molecule as a rigid rotor. Describe the rotational energy levels and the transitions observed in the rotational spectra. Draw the energy levels and indicate the rotational spectral lines. 	10	CO3
Q 9	 (a) Apply HMO method to find the π-molecular orbitals and their energy values for allyl cation. Also calculate the π-bond energy. (b) State the Schrödinger equation for a hydrogen atom in Cartesian and spherical polar coordinates. Write down the general forms of the radial and angular wavefunctions. 	10	CO2
	SECTION-C (2Qx20M=40 Marks)		
Q 10	(a) A one-dimensional anharmonic oscillator is treated by perturbation theory. The harmonic oscillator is used as the unperturbed system and the perturbation is λx^3 (λ is constant). Using only the first order perturbation correction, determine the total ground state energy of the anharmonic oscillator. OR If $\Psi = 0.7\varphi_A + 0.5\varphi_B$ is a normalized molecular orbital of a diatomic molecule AB, constructed from φ_A and φ_B which are also normalized. Calculate the overlap between φ_A and φ_B .	10+10	CO2
	 (b) Apply HMO theory to find the wave functions of π -molecular orbitals and their energy values for ethylene molecule. OR Derive the expression of wave function correction due to the first order perturbation. 		CO3
Q 11	 (a) Write the Hamiltonian operator for H₂⁺. Derive the expression of energy and wavefunction of bonding and antibonding molecular orbitals of H²⁺ using LCAO-MO treatment. (b) The vibration of ¹H¹²⁷I molecule can be considered as simple harmonic oscillation. The force constant is 300 Nm⁻¹. Calculate the fundamental vibration frequency and the zero point energy of this molecule. 	10+10	CO2 CO3