Name:

Enrolment No:

Course Code: CHEM 1029

UPES End Semester Examination, December 2024

Course:States of Matter and Ionic EquilibriaProgram:BSc. (H) Chemistry by Research

Semester: I Time : 03 hrs. Max. Marks: 100

Instructions: Answer all the questions. Internal choice is given in Q9 and Q11.

SECTION A (50x4M=20Marks)				
S. No.		Marks	СО	
Q 1	25.8 litre of a gas has a pressure of 690 torr and temperature of 17 °C. What will be the volume if pressure is changed to 1.85 atm and the temperature to 345 K.	4	CO1	
Q 2	Calculate the total kinetic energy of 0.5 mol of an idea gas at 273 K (R= 8.314 J K ⁻¹ mol ⁻¹) (Avagadro's number 6.023 x 10^{-23} /mol).	4	CO1	
Q 3	Calculate the volume of 10 moles of methane at 100 atm pressure and 0 °C. At this temperature and pressure, $Z = 0.75$.	4	CO1	
Q 4	What do you mean by Miller indices and how is it determined?	4	CO1	
Q 5	The dissociation constant of formic acid and acetic acid are $1.77 \times 10^{-4} \text{ mol/dm}^3$ and $1.75 \times 10^{-5} \text{ mol/dm}^3$. Calculate the relative strengths of two acid and point out which one is stronger?	4	CO1	
SECTION B				
(4Qx10M= 40 Marks)				
Q 6	Derive the expression for pH of a solution obtained after hydrolysis of salt of weak acid and strong base.	10	CO1	
Q 7	 (a) Calculate the average kinetic energy of a hydrogen molecule at 0°C. (R= 8.314 x 10⁷ erg K⁻¹ mol⁻¹). (b) Calculate the kinetic energy of two moles of nitrogen at 27 °C. (R=8.314 J K⁻¹ mol⁻¹) 	5 + 5	CO2	
Q 8	Calculate the RMS velocity of chlorine molecules at 12 ^o C and 78 cm pressure.	10	CO2	
Q 9	What pressure is exerted by a mixture of 2.0 gm of H_2 and 8.0 gm of N_2 at 273 K in a 10 litre vessel?	10	CO3	

	Or			
	The first-order reflections from the 100, 110 and 111 planes of a given cubic crystal (NaCl crystal) were found to occur at angles 5.9° , 8.4° and 5.2° respectively. Determine the type of cubic lattice to which the crystal belongs.			
SECTION-C (2Qx20M=40 Marks)				
Q 10	(a) One litre solution containing 0.1 mole of CH ₃ COOH and 0.1 mole of CH ₃ COONa provides a buffer of pH 4.74. Calculate the pH of solution after the addition of 0.02 mole NaOH. $K_a = 1.8 \times 10^{-5.}$ (b) At 0 °C and 1 atm pressure the molecular diameter of gas is 4A°. Calculate the mean free path of its molecules.	10 + 10	CO2	
Q 11	(a) Derive the mathematical expression of kinetic molecular theory of gases.			
	Or			
	The RMS velocity of hydrogen at STP is 1.85×10^5 cm s ⁻¹ and its mean free path is 1.75×10^{-5} cm. Calculate the collision number.			
	(b) Calculate the root mean square velocity, average velocity and most probable velocity of sulphur dioxide molecules at 427 $^{\circ}$ C.	10 + 10	CO3	
	Or			
	In what way does knowledge of surface tension help in deciding the chemical constitution of the liquid?			