Name:

Enrolment No:

UPES End Semester Examination, December 2024 Dreamanne Namer B.Sa. Hang. Dhysics /					
Programme Name: B.Sc. Hons. Physics / B.Sc. Hons. Physics by Research		Semester: 1 Time : 03 hrs			
Course Name : Linear Algebra I (Minor)		Max. Marks: 100			
Course					
Nos. of page(s) : 2					
Instructions: All questions are compulsory. There are internal choices in Q6 and Q11. SECTION A					
(5Qx4M=20Marks)					
S. No.		Marks	СО		
Q 1	If A and B are square matrices, there exists an invertible matrix P such that $B = P^{-1}AP$. If X is the eigenvector of B corresponding to an eigenvalue λ , what will be the eigenvector of A corresponding to the same eigenvalue. Prove it.	4	C01		
Q 2	Check for the diagonalizability of the matrix $\begin{bmatrix} 0 & 1 & 0 \\ 0 & 0 & 1 \\ 4 & -17 & 8 \end{bmatrix}$ without finding the eigenvectors. Explain the reason.	4	C01		
Q 3	Let $V = \mathbb{R}^3$. Check whether W is a subspace of V , where $W = \{(a, b, c) \in \mathbb{R}^3 : a^2 + b^2 + c^2 \le 1\}.$	4	CO2		
Q 4	Find the basis and dimension of a subspace $\{(x, x, y) \in \mathbb{R}^3 : x, y \in \mathbb{R}\}$ of \mathbb{R}^3 .	4	CO2		
Q 5	If A is an $m \times n$ matrix, what is the largest possible value for its rank and the smallest possible value for its nullity?	4	CO3		
SECTION B					
(4Qx10M= 40 Marks)					
Q 6	Write the necessary and sufficient condition for the sum of two subspaces of a vector space to be a direct sum. Let U be the xy -plane and W be the yz -plane in \mathbb{R}^3 . Can we write every vector in \mathbb{R}^3 as the sum of a vector in U and a vector in W ? Justify your answer. OR Suppose $U = \{(x, x, y, y) \in \mathbb{R}^4 : x, y \in \mathbb{R}\}$. Find a subspace W of \mathbb{R}^4 , such that $\mathbb{R}^4 = U \bigoplus W$.	10	CO2		

Q 7	Consider the basis $S = \{v_1, v_2\}$ for \mathbb{R}^2 , where $v_1 = (1, 1)$ and $v_2 = (1, 0)$, and let $T: \mathbb{R}^2 \to \mathbb{R}^2$ be a linear transformation for which $T(v_1) = (1, -2)$ and $T(v_2) = (-4, 1)$. Find a formula for $T(x, y)$, and use that to find $T(5, -3)$. Also find the formula for $T^{-1}(x, y)$, if exists.	10	CO3	
Q 8	State the Rank Nullity Theorem, and use it to find the nullity of <i>T</i> , if a) $T: \mathbb{R}^5 \to P_5$ has rank 3, b) $T: P_4 \to P_3$ has rank 1, where P_n is a vector space of all the polynomial with degree less than or equal to n, defined over the real field.	10	CO3	
Q 9	Define Isomorphism on vector spaces. Let $T: P_2 \to M_{22}$ be a linear transformation defined by $T(p(x)) = \begin{bmatrix} p(0) & p(1) \\ p(1) & p(0) \end{bmatrix}$, where P_2 is a vector space of all the polynomials with degree less than or equal to 2, and M_{22} is a vector space of all the matrices of order 2×2 . Is T a linear transformation. Justify your answer.	10	CO3	
SECTION-C (2Qx20M=40 Marks)				
Q 10	 Consider the bases B = {p₁, p₂}, and B' = {q₁, q₂} for a vector space of all the polynomial with degree less than or equal to 1, P₁, where p₁ = 6 + 3x, p₂ = 10 + 2x, q₁ = 2, q₂ = 3 + 2x a) Find a transition matrix from B' to B. b) Find a transition matrix from B to B'. c) Compute the coordinate vector (p)_B, where p = -4 + x, and use it to compute (p)_{B'}. 	20	CO2	
Q 11	Find the matrix representation of each linear transformation, $T: \mathbb{R}^3 \to \mathbb{R}^3$, relative to the standard basis of \mathbb{R}^3 . Also find the nullity of <i>T</i> in each case. a) $T(x, y, z) = (x, y, 0)$ b) $T(x, y, z) = (z, y + z, x + y + z)$ c) $T(x, y, z) = (2x - 7y - 4z, 3x + y + 4z, 6x - 8y + z)$ OR The matrix representation of a linear transformation $T: P_2 \to P_2$ with respect to the standard basis is given by $\begin{bmatrix} 1 & -5 & 25 \\ 0 & 3 & -30 \\ 0 & 0 & 9 \end{bmatrix}$. Find a formula for the transformation $T(a + bx + cx^2)$. Check if <i>T</i> is a one-one onto map. If yes, find $T^{-1}(a + bx + cx^2)$.	20	CO3	