Name:		WUPES	
Enrolment No:			UNIVERSITY OF TOMORROW
		UPES	
	End Semester	Examination, Decemb	per 2024
Programme Nai	me : BTech-CSE-MINOR		
Semester	: VII		
Course Name	urse Name : Pattern Recognition and Anomaly Detection Time: 03 hrs		Time: 03 hrs
Course Code	: CSAI4004P		Max. Marks: 100
Nos. of page(s)	:2		
		SECTION A	(4 Marks *5 = 20 Marks)
	Ans	wer all questions	
S No			Manka CO

S. No.		Marks	CO
Q 1	Compare two continuous and discrete probability functions with equation	4	CO1
0.0	and example.		
Q 2	Discuss the roles of regularization, cross-validation, and early stopping in combating overfitting		CO1
Q 3	What is model combination in pattern recognition, and why is it useful?	4	CO1
0.4	List two applications each for quota sampling and stratified sampling in	4	CO2
× ·	market research.	4	02
Q 5	Explain the concept of Sparse Kernel Machines.	4	CO1
	SECTION B (10 Marks	*4 = 40 N	larks)
	Answer all questions		
Q 6	Describe RBF Kernel and explain how the kernel trick allows algorithms like	10	coa
	Support Vector Machines (SVMs) to operate in high-dimensional spaces	10	02
	without explicitly transforming the data.		
Q 7	You are given the following data for a classification model:		
	• True Positives (TP): 45		
	• True Negatives (TN): 40		
	• False Positives (FP): 10		
	• False Negatives (FN): 5		
	Calculate the following metrics:		
	• Precision		
	• Recall		
	• F1-Score		
	• Accuracy	10	COL
	Show detailed calculations and interpret the results for each metric.	10	COI
	Explain the roles of precision and recall in evaluating classification models.		
	1 Discuss the significance of the F1-score in balancing precision and		
	recall particularly in the case of imbalanced datasets		
	2 Provide an example of a real-world application where:		
	• Precision is more important than recall		
	• Recall is more important than precision		
	• F1-score is critical for model evaluation		
	Instructions:		
	Institucions.		
1	• JUSHIY YOUI ANSWERS WITH CAMPPIES OF SCENATIOS.	1	1

		-	
	Use clear mathematical and practical reasoning.		
Q8	 Compare and contrast Bayesian Networks and Markov Networks. Discuss the similarities and differences between Bayesian Networks and Markov Networks in terms of directed vs. undirected graphs, modeling dependencies, and inference. Provide examples of scenarios where one network might be preferred over the other. 	10	CO1
Q 9	 You are given a dataset with the following 2 data points and a Gaussian Mixture Model with 2 components (k=2): Component 1: μ₁ = [2, 3], Σ₁ = ¹ 0 0 1 , π₁ = 0.6 Component 2: μ₂ = [5, 8], Σ₂ = ² 0 0 2 , π₂ = 0.4 Data Points: x₁ = [3, 4], x₂ = [6, 9] Tasks: Calculate the probability density p(xi μ_k, Σ_k) for each component and each data point using the multivariate Gaussian formula. Compute the responsibilities (r_{ik}) for both data points and components. 	10	CO2
	SECTION C (20 Marks * Answer all questions	$2 = 40 \mathrm{M}$	arks)
Q 10	 Use Case: Fraud Detection in Credit Card Transactions Consider a scenario where a bank wants to detect fraudulent credit card transactions. The bank has historical data with features such as transaction amount, location, merchant category, and time of transaction. a. Modeling the Data: Describe the steps you would take to preprocess the data for anomaly detection. What are the challenges associated with this dataset? Which are the possible techniques would you choose to detect anomalies in this context? Give your preference among those techniques with justification. Provide an example of how false positives might be costly in a fraud detection scenario and how to optimize the trade-off. Discuss the potential role of unsupervised anomaly detection methods for cases where labeled data is not available. 	20	CO1
Q 11	 a) Describe the concept of a Gaussian Mixture Model (GMM). Explain how GMM models data using Gaussian distributions. Define its key components: mean vector, covariance matrix, and mixing coefficients. b) Derive the likelihood function for GMM and explain how the Expectation-Maximization (EM) algorithm is used to optimize it. Include the mathematical formulation of the E-step and M-step. 	20	CO2

• Provide an intuitive explanation of how the algorithm iteratively improves the model.	
c) Highlight the main differences between GMM and K-Means clustering	