Name:

Enrolment No:

UPES End Semester Examination, December 2024

Course	:	Discrete Mathematics & Linear Algebra	Semester	: III
Programme	:	B.Sc. Computer Science	Time	: 03 hrs
Course Code	:	CSEG2057	Max. Mark	s: 100
Nos. of page(s)	:	03		

Instructions: Answer ALL the questions.

SECTION A (50x4M-20Marks)							
S. No.	No.		CO				
Q 1	Using Cayley-Hamilton theorem, find the inverse of the matrix $A = \begin{bmatrix} 1 & 2 \\ 2 & -1 \end{bmatrix}$.	4	CO4				
Q 2 Show that the relation $R = \{(a, b) \in Z \times Z : a \text{ divides } b \text{ in } Z\}$ is not partial order on Z.		4	CO3				
Q 3 Define a field. Give suitable examples.		4	CO5				
Q 4	Write the converse, inverse and contrapositive of the following statements:						
	i) The home team wins whenever it is raining. ii) If n is greater than 3, then n^2 is greater than 9.	4	CO2				
Q 5	Let G be a group. If $a, b \in G$ such that $a^4 = e$, the identity element of G and	4 005					
	$ab = ba^2$, prove that $a = e$.		005				
SECTION B (4Qx10M= 40 Marks)							
Q 6	Define lattice and determine whether the poset represented by the given Hasse diagram is a lattice or not. $f \qquad \qquad$	10	CO3				

Q 7	Prove that the set $G = \{1,2,3,4,5,6\}$ forms an Abelian group with respect to multiplication modulo 7.		CO5
Q 8	Solve the recurrence relation $a_{n+2} + 2a_{n+1} - 15a_n = 6n + 10$ that satisfies the initial conditions $a_0 = 1$, $a_1 = -\frac{1}{2}$.		CO1
Q 9	What is the principal disjunctive normal form? Find the principal disjunctive normal form of $(p \land q) \lor (\sim p \land r) \lor (q \land r)$. OR Prove the following equivalence by using laws of propositional algebra $P \rightarrow (Q \lor R) \equiv (P \rightarrow Q) \lor (P \rightarrow R)$	10	CO2
	SECTION-C (2Qx20M=40 Marks)		
Q 10	 (a) Let F be the field of complex numbers and T be the function from F³ into F³ defined by T(x₁, x₂, x₃) = (x₁ - x₂ + 2x₃, 2x₁ + x₂ - x₃, -x₁ - 2x₂). Verify that T is a linear transformation. Describe the null space of T. (b) Find the matrix of T in the ordered basis (α₁, α₂, α₃) where α₁ = (1, 0, 1), α₂ = (-1, 2, 1), α₃ = (2, 1, 1), and T is the linear operator on ℝ³ defined by T(x₁, x₂, x₃) = (3x₁ + x₃, -2x₁ + x₂, -x₁ + 2x₂ + 4x₃). 	20	CO6
Q 11	 Diagonalize the following matrix A =	20	CO4

$B = \begin{bmatrix} 2 & 4 & 3 & 6 \\ -1 & -2 & 6 & 4 \\ 1 & -1 & 2 & -2 \end{bmatrix}.$	
--	--