Name:

Enrolment No:

UPES End Semester Examination, Dec 2024

Course: Soft Computing Program: MCA Course Code: CSAI8009P

Semester: III Time: 03 hrs. Max. Marks: 100

Instructions: *Please attempt according to the provided time and given weightage. Start Answering on the new page and mention the question number clearly on the left margin.*

SECTION A (5Qx4M=20Marks)				
S. No.		Marks	СО	
Q 1	Explain Soft Computing.	4	CO1	
Q 2	Explain different types of distances and cost functions used in ML.	4	CO5	
Q 3	Explain the use of activation function in Neural networks with examples.	4	CO2	
Q 4	Explain Fuzzy sets and Crisp sets. Also, explain different types of membership functions.	4	CO2	
Q 5	Explain the Chain Rule and Elitism.	4	CO5	
	SECTION B (4Qx10M= 40 Marks)			
Q 6	Design an AND gate using Perceptron, start with random weights, and use the weight update algorithm to adjust weights. OR Compare and contrast between biological neurons and artificial neurons. Show the basic mathematical model of perceptron.	10	CO3, CO2	
Q 7	Derive an expression for gradient descent with backpropagation (BP)	10	CO2	
Q 8	Obtain the truth table for given expressions and determine whether they are tautology or contradiction.i) $(P \lor Q) \Rightarrow (\sim P)$ ii) $(P \Rightarrow Q) = (\neg P \lor Q)$ iii) $((P \Rightarrow Q) \land (Q \Rightarrow P) = (P = Q))$	10	CO1	

Q 9	Explain defuzzification and commonly used defuzzification methods.	10	CO2			
	Q 1SECTION-C					
(2Qx20M=40 Marks)						
Q 10	Explain the gradient descent algorithm and derive an expression to update weights and biases. OR Design a neural network to classify 60,000 handwritten digits, analyze its computational complexity, and justify the choice of architecture.	20	CO5, CO3			
Q 11	Define genetic algorithm. Provide a Side-by-side comparison of biological genetics and genetic algorithms. OR Explain with an example where the genetic algorithm is useful. Write Pseudo (or Python) code to implement a Genetic algorithm to solve the knapsack problem (or any other example problem).	20	CO1, CO3			