Name:				
Enrolme	ent No:			
Course:	End Semester	UPES Examination, December 2024 Seme	ster:	
Program	n:	Time	:()3 hrs.
Course Instruct	Code: tions:	Max.	Marks: 1	100
	S	ECTION A		
	(5Qx	4M=20Marks)		
S. No.				CO
Q 1	Describe the concept of dominance in Game Theory and its application in economic decision-making.			CO1
Q 2	Explain the concept of strategic form games and provide an example from a network setting.			CO1
Q 3	Define Nash Equilibrium and explain why it may not always exist in pure strategies.			CO2
Q 4	Discuss how correlated equilibria differ from Nash Equilibria with respect to efficiency.		4	CO3
Q 5	Explain the use of potential games in traffic routing and congestion management.		4	CO3
	S	ECTION B		
	(4Qx1	0M= 40 Marks)		
Q 6	Using Rationalizability, Analyze Decis Scenario Consider a two-player game where each an uncertain market. The firms decide to	sion-Making in an Uncertain Market n player represents a competing firm in p Invest (I) in a new technology or Not		
	Invest (NI). The payoff table below rep	resents possible outcomes:		
	Firm B: 1	Invest (I) Firm B: Not Invest (NI)	10	CO1
	Firm A: Invest (I) (3, 3)	(5, 1)	10	COI
	Firm A: Not Invest (NI) (1, 5)	(2, 2)		
 Identify the rationalizable strategies for each firm. Discuss the equilibrium outcome based on rationalizable strategies in this uncertain market environment. 				
Q 7	Illustrate with an Example How Super Study Market Competition Consider a game with two competing fir production levels, High (H) or Low (L) when it matches the competitor's of complementarity, a characteristic of super-	ermodular Games Can Be Applied to ms (Firm X and Firm Y) choosing their . Assume the payoff is higher for a firm choice, illustrating positive strategic permodular games.	10	CO2

	Firm Y: High (H) Firm Y: Low (L)				
	Firm X: High (H) (4, 4) (2, 3)				
	Firm X: Low (L) (3, 2) (5, 5)				
	1. Show that this is a supermodular game by demonstrating that payoffs				
	increase as both firms move from (L, L) to (H, H) .				
	2. Discuss now the firms' decisions align in equilibrium due to strategic complementarity				
	comprementarity.				
Q 8	Apply Backward Induction to Solve an Extensive Form Game in a Competitive Bidding Context				
	Consider an auction with two bidders, Bidder A and Bidder B, competing for				
	an asset with an initial value of \$50. The game proceeds as follows: • Stage 1: Bidder A chooses a bid level: High (H) or Low (L)				
	• Stage 1 : Bidder A chooses a bid level: High (H) or Low (L).				
	• Stage 2: Bidder B observes A's choice and chooses to Match or Not Match the bid.				
	The payoffs for each possible outcome are:				
	1. If both choose High (H), the winner's payoff is \$40, and the loser's payoff is \$0	10	CO3		
	2. If both choose Low (L), the winner's payoff is \$30, and the loser's				
	payoff is \$10.				
	3. If one chooses High (H) and the other chooses Low (L), the higher				
	bidder wins with a payoff of \$50, and the lower bidder gets \$0.				
	4. Construct the game tree. 5 Apply backward induction to find the optimal strategies for Bidder A				
	and Bidder B.				
Q 9	Compare Subgame Perfect Equilibrium with Nash Equilibrium in Terms				
	Consider a sequential-move game where Player 1 chooses \mathbf{A} or \mathbf{B} , followed by				
	Player 2 observing the choice and choosing C or D . The payoffs are as follows:				
	Player 2: C Player 2: D				
	Player 1: A $(2, 3)$ $(4, 1)$				
	Player 1: B (3, 2) (1, 4)	10	CO4		
	1. Identify the Nash Equilibria of the game.	_			
	2. Use subgame perfect equilibrium to determine the outcome in each				
	subgame.				
	5. Compare the predictability of strategies in Nash and subgame perfect				
	the players' strategies.				

		SECTION- (2Qx20M=40 N	C Iarks)			
Q 10 E S V d tl S n b W F V	Bayesian Game in an Aud Background: Two bidder Background: Two bidder Background: Two bidder Bistribution. The bidders or the possible valuation of the Scenario: Each bidder can the bidder can bidder can the item wins the item. If be based on a coin flip. If one wins the item. Payoff Structure: The pay value to the bidder and the Bidder A: High (H) vA=10 Bidder A: Low (L) vA=10 Question: 1. Formulate the gan strategies, types, an	SECTION- (2Qx20M=40 M ction Scenario s, Bidder A and Bidd e item. Each bidder's v on and independently hly know their own value e other. choose to bid High (H) oth bid high, there's a bids high and the othe roff for winning is the d amount paid. If no one Bidder B: High (H vB=8 , (1, 0) if won, (0, 1) if lost , (0, 4) me as a Bayesian gan d payoffs.	C Iarks) ler B, are participating valuation of the item, v valuation of the item, v v drawn from a con- nation but have a belief or Low (L). If both bi- tie, and the item is aw r bids low, the higher is lifference between the wins, the payoff is ze (1), Bidder B: Low (1) vB=8 (2, 0) (0, 0) me, identifying the ping (1)	g in a A and mmon about d low, varded bidder item's ro.	20	CO3
	 Discuss how a Bay strategy, considerin Analyze how each b beliefs about the oth 	esian Nash Equilibriun g the uncertainty in the pidder's strategy might her's valuation distribu	n can optimize each bi e opponent's valuation. change if they have dif tion.	dder's fering		
Q 11 M E c iii c k S o a c F u	Mechanism Design for M Background: A company contractors (Agent 1 and A nformation about their co- company wants to maximiz know each agent's cost. Scenario: The contract can or Flat-Rate (FR). The ef- agents' true costs, with high cost for the company. Payoff Structure: The table inder each contract type ar Agent 1: High Cost (H), FR	ulti-Agent Contracting y is looking to design Agent 2) to deliver serve ost of service, either 1 we service quality while the bestructured in two ffectiveness of each content in the structured in two ffectiveness of each content in the service service and cost scenario. Agent 2: High Cost (H) (5, 5)	ng gn a contract for my vices. Each agent has p High (H) or Low (L) minimizing costs but d ways: Incentive-Base ontract type depends of better quality but at a for the company and a Agent 2: Low Cost (L) (6, 3)	ultiple private). The oesn't d (IB) on the higher agents	20	CO5

Agent 1: High Cost (H), IB	(8, 6)	(9, 4)			
Agent 1: Low Cost (L), FR	(6, 2)	(10, 10)			
Agent 1: Low Cost (L), IB	(7, 4)	(12, 8)			
 Question: 1. Analyze the game at be applied to create a company's objective 2. Evaluate which con for the company, co 3. Discuss the limitati particularly when age 	 stion: Analyze the game and determine how mechanism design principles can be applied to create a contract that aligns the agents' incentives with the company's objectives. Evaluate which contract structure (IB or FR) would be more effective for the company, considering the agents' private cost information. Discuss the limitations of using mechanism design in such settings, particularly when agents may misreport their costs. 				