Name:

Enrolment No:

UPES

End Semester Examination, December 2024

Course: Natural Language Processing

Program: MCA

Course Code: CSAI8004P

Semester: III
Time : 03 hrs.

Max. Marks: 100

SECTION A

S. No.		Marks	CO
Q 1	List Linguistic and Mathematical steps for building a Distributional Semantic Model (DSM).	4	CO3
Q 2	Describe context weighting when documents are used as contexts.	4	CO3
Q 3	Explain two different tools available for machine translation with their advantages and limitations.	4	CO5
Q 4	Explain how does question-answering model works.	4	CO4
Q 5	State the intuition behind Viterbi algorithm. Describe the three steps of Viterbi algorithm.	(1+3=4)	CO2
	SECTION B		
Q 6	Explain the five key components of Natural Language Processing (NLP). Discuss two roles of Natural Language Understanding (NLU) and Natural Language Generation (NLG) in NLP systems.	(5+5=10)	CO1
Q 7	Explain two importance of smoothing in language models. Discuss Good-Turing and Kneser-Ney Smoothing techniques with mathematical formulas.	(5+5=10)	CO2
Q 8	Explain the components of information retrieval system. List three differences between information retrieval and data retrieval.	(7+3=10)	CO4
Q9	Explain different methods to word sense disambiguation (WSD). Discuss three applications of WSD. (7+3) OR Explain syntactic parsing. Describe context free grammar (CFG) and probabilistic context free grammar (PCFG) with example. (3+7)	10	CO3
	SECTION-C		
Q 10	Tag the phrase "a light book" using HMM tagger with Viterbi algorithm, where we have the following probabilities: P(the/DT) = 0.3, P(the/NN) = 0.1, P(light/NN) = 0.003,	20	CO2

	$\begin{array}{lll} P(light/JJ) &= 0.002, \ P(light/VB) &= 0.06, \ P(book/NN) &= 0.003, \\ P(book/VB) &= 0.01, \ P(VB/DT) &= 0.00001, \ P(NN/DT) &= 0.5, \\ P(JJ/DT) &= 0.3, \ P(NN/NN) &= 0.2, \ P(JJ/NN) &= 0.002, \ P(NN/JJ) &= 0.2, \\ P(NN/VB) &= 0.3, \ P(VB/NN) &= 0.3, \ P(VB/JJ) &= 0.001, \ P(VB/VB) &= 0.1 \\ \hline Assume all other conditional probabilities not mentioned to be zero. \\ Also, assume that all tags have the same probability to appear in the beginning of a sentence. \\ \hline \end{array}$		
Q 11	Given the following grammar: S NP VP VP VBG NNS VP VBZ VP NP DT NN NP JJ NNS DT a NN pilot VBZ —likes VBG flying JJ flying NNS planes Use the CKY algorithm to parse the sentence "a pilot likes flying planes" OR (a) Differentiate Top-Down parsing and Bottom-Up parsing. (5) (b) Consider the following four sentences as a document corpus: "AI improves learning." "Learning improves intelligence." "AI fosters innovation." "Intelligence boosts innovation." Calculate: i. The Term Frequency (TF) for each word in each sentence. (5) ii. The Inverse Document Frequency (IDF) for each unique word in the corpus. (5) iii. The TF-IDF feature vector for each unique word across the sentences. (5)	20	CO3