Name:

Enrolment No:

UPES

End Semester Examination, December 2024

Course: Deep Learning and ANN Program: MCA Course Code: CSAI8003P Semester: III Time : 03 hrs. Max. Marks: 100

Instructions:

- Attempt all questions.
- Mention the question number prominently on your answer sheet and write legibly.
- Use of calculator is allowed.

SECTION A (5Qx4M=20Marks)

Attempt all questions. Each question carries 4 marks.					
S. No.	Question	Marks	CO		
Q 1	"Neurons that fire together wire together" – Comment.	4	CO2		
Q 2	Narrate the problems that Swish Activation tries to overcome.	4	CO1		
Q 3	Compare and contrast a Boltzmann Machine with an MLP.	4	CO2		
Q 4	Demonstrate the superiority of the Leaky ReLU activation over simple ReLU activation function.	4	CO1		
Q 5	Define the following: • Precision • Recall	4	CO3		
	SECTION B				

(4Qx10M= 40 Marks)

Attempt all questions. Each question carries 10 marks.

Q 6	Given a cost function $f(x) = 3x^2 + 2$. Apply gradient decent to calculate the value of $x^{(1)}$, and $x^{(2)}$ if $x^{(0)} = 3$, and learning rate = 0.8.	10	CO2	
Q 7	Prove that function $f(x) = max(0, x)$ satisfies all the necessary conditions of an activation function. Under what conditions will it become "dead".	10	CO1	
Q 8	Discuss five applications of deep learning in different domains.	10	CO3	

Q 9	Given an image matrix in the following form:		
	4 4 2 5		
	9 -1 4 5		
	A tramel of size 2x2 is sizen as follows:		
	A kernel of size 2x2 is given as follows:	10	CON
		10	002
	Take the value of stride as 2 and calculate the resultant matrix after		
	applying the following:		
	• Convolutional operation		
	• Max pooling		
	Average pooling		
	SECTION-C (20x20M-40 Mortes)		
	(2QX20191-40 Marks) Attempt all questions Each question carries 20 marks		
0.10	Consider a dataset of movie reviews stored in "imdb csv" file	•	
X 10	containing reviews in one column and their corresponding sentiment		
	rating $(0 - \text{negative}; 1 - \text{positive})$. Write the Python code using		
	Tesorflow Keras to train a text sentiment classifier:		
	• Load the dataset		~~~
	• Split into train and test samples	20	CO2,
	• Apply Embedding layer to convert text to numeric		CO3
	representation		
	Apply sequence padding		
	• Define, compile and train model		
	• Evaluate model		
Q 11	Create a neural network model for classification of iris flowers into		
	three categories based on the 4 features:		
	• Load the dataset from a csv file		
	• Train test split		
	• Create a model		
	• Compile the model	30	CO2,
	• I rain the model	20	CO3
	• Evaluate the model		
	UK Create a neural network model for recording the union of a house series		
	Create a neural network model for regressing the price of a nouse using 8 numerical attributes. Perform the pagessary stops of load split create		
	compile and evaluate the model Discuss any two performance metrics		
	suitable for this task.		