Name: **Enrolment No:** UPES End Semester Examination, December 2024 **Course: Digital Electronics** Semester: I **Program: BSc Computer Science** Time: 03 hrs. **Course Code: ECEG1010** Max. Marks: 100 Instructions: Attempt all the questions. **SECTION A** (5Qx4M=20Marks) S. No. Marks CO Consider three 4-variable functions f_1 , f_2 and f_3 , which are expressed in Q 1 sum-of-min terms as $f_1 = \sum (0, 2, 5, 8, 14), f_2 = \sum (2, 3, 6, 8, 14, 15),$ $f_3 = \sum (2, 7, 11, 14)$. For the following circuit with one AND gate and one XOR gate, the output function *f* can be expressed as? f_1 4 **CO1** f_3 Q 2 Convert each of the following binary numbers to octal, decimal, and hexadecimal formats. **CO1** 4 (a) $(111011101)_2$ (b) (10101010111)₂ Sketch the output waveform for the 3-input NOR gate, showing the Q 3 proper relation to the input. Α. 4 **CO2** B В **C** -С Design a full-subtractor using suitable logic gates. Q4 4 CO₂ Design a 16:1 multiplexer using 4:1 multiplexers. Q 5 4 **CO3 SECTION B** (4Qx10M= 40 Marks)

Q 6	Simplify the following expressions using K-map		
	(a) $f(W, X, Y, Z) = \sum m(1, 3, 4, 6, 9, 11, 12, 14)$	10	CO1
	(b) $f(A, B, C) = \sum m(0, 1, 6, 7) + \sum d(3, 4, 5)$		
Q 7	Design a three-bit DOWN Asynchronous counter and draw the output	10	CO2
	waveforms.		
Q 8	Draw the logic circuit of		
	(a) J-K flip-flop using D flip-flop	10	CO3
	(b) T flip-flop using S-R flip-flop		
Q 9	Design a four-bit self-correcting Ring counter using state diagram.		
	OR	10	CO4
	Design a sequence generator using D flip-flop to generate the sequence		
	11001011.		
SECTION-C			
(2Qx20M=40 Marks)			
Q 10	What are shift registers? Explain the operation of different types of shift	20	CO3
_	registers along with their circuit diagrams using J-K flip-flops.	20	003
Q 11	Design a Mod-12 synchronous UP counter using D flip-flops.		
-	OR	20	CO4
	Design a 3-bit synchronous UP/DOWN counter using J-K flip-flops.		