Name:

Enrolment No:

UPES End Semester Examination, December 2024

Course: Basic Mathematics Program: BCA Course Code: MATH1058 Semester: I Time: 03 hrs. Max. Marks: 100

Instructions: Attempt all questions. Calculator is allowed.

SECTION A (5Qx4M=20Marks)				
S. No.		Marks	СО	
Q 1	If $u = \frac{x^3 + y^3}{x^2 + y^2}$ then find the value of $x \frac{\partial u}{\partial x} + y \frac{\partial u}{\partial y}$.	4	CO2	
Q 2	Find the Compound Interest on <i>Rs</i> 48000 for 1 years at 8% per annum when interest is compounded half-yearly.	4	CO1	
Q 3	If $x = -\frac{1}{2}$, is a solution of the quadratic equation $3x^2 + 2kx - 3 = 0$, find the value of <i>k</i> .	4	CO1	
Q 4	Find the center and radius the circle $x^2 + y^2 - 8x + 10y - 12 = 0$.	4	CO3	
Q 5	Three metal cubes of edge lengths 3 cm, 4 cm and 5 cm are melted to form a single cube. Find the edge of such cube.	4	CO1	
	SECTION B (4Qx10M= 40 Marks)			
Q 6	If $y = e^{x+e^{x+e^{x+\infty}}}$ then find first derivative of y with respect to x.	10	CO2	
Q 7	If $u = e^{xyz}$ then show that $\frac{\partial^3 u}{\partial x \partial y \partial z} = (1 + 3xyz + x^2y^2z^2)e^{xyz}$.	10	CO2	
Q 8	Find the area of a parallelogram whose adjacent sides are given by the vectors $\vec{a} = \hat{i} - \hat{j} + 3\hat{k}$ and $\vec{b} = 2\hat{i} - 7\hat{j} + \hat{k}$.	10	CO3	
Q 9	Evaluate the definite integral $\int_0^{\frac{\pi}{2}} \log \sin x dx$.		CO2	
	OR Evaluate $\iint (x^2 - y^2) dxdy$ over the triangle with vertices (0,1), (1,1) and (1,2).	10		

	SECTION-C (2Qx20M=40 Marks)		
Q 10	 (i) Find the value of λ so that the two vectors d = 2î + 3ĵ - k and b = -4î - 6ĵ + λk are perpendicular to each other. (ii) Show that the points with the position vectors d = -2î - 2ĵ + 4k, b = -2î + 4ĵ - 2k, c = 4î - 2ĵ - 2k then Prove that d, b, c are coplanar. (i) Find the equation of a line passing through the point (3, -2) and perpendicular to the line x - 3y + 5 = 0. (ii) Find the coordinates of the foci, the vertices, the lengths of major and minor axes and the eccentricity of the ellipse x²/25 + y²/9 = 1. 	20	CO3
Q 11	 A manufacturer makes Rs 600 profit on each 21" TV set it produces and Rs 400 profit on each 14" TV set. A 21" TV requires 1 hour on machine X, 1 hour on machine Y and 4 hours on machine Z. The 14" TV requires 2 hours on machine X, 1 hour on machine Y and 1 hour on machine Z. In a given day machine X, Y, Z can work a maximum of 16, 9 and 24 hours respectively. (i) Formulate this problem as a linear programing problem so that he maximizes his profit. (ii) Draw the feasible region on a graph and clearly mention the corner points. (iii) Solve this problem graphically and find, how many 21" TV sets and how many 14" TV sets should produce per day to maximize the profit. 	20	CO4
