Course:

Program:

Enrolment No:

UPES

End Semester Examination, December 2024

Advanced Engineering Mathematics-I B. Tech. SoCS Semester: I Time : 03 hrs. Max. Marks: 100

Course Code: MATH1059

Instructions: Attempt all questions from Section A (each carrying 4 marks); attempt all questions from Section B (each carrying 10 marks) and attempt all questions from Section C (each carrying 20 marks). Question 7 and 10 have internal choice.

	SECTION A (5Qx4M=20Marks)		
S. No.		Marks	СО
Q 1	Define homogeneous function. Check whether the following function		
	$u(x,y) = \frac{1}{x^2} + \frac{1}{xy} + \frac{\log_e x - \log_e y}{x^2 + y^2} (x > 0, y > 0)$	4	CO1
	is homogeneous or not.		
Q 2	If $z = e^{ax+by}$, compute $\left(b\frac{\partial z}{\partial x} + a\frac{\partial z}{\partial y}\right)$ where <i>a</i> and <i>b</i> are constants.	4	CO1
Q 3	Evaluate the triple integral $\int_{-1}^{1} \int_{0}^{z} \int_{x-z}^{x+z} (x+y+z) dy dx dz$.	4	CO2
Q 4	What is the greatest rate of increase of $u(x, y, z) = xyz^2$ at $(1, 0, 3)$?	4	CO3
Q 5	Find the general solution of the differential equation		
	$(D^2 + 6D + 9)y = 0$ (<i>D</i> stands for $\frac{d}{dx}$).	4	CO4
	SECTION B (4Qx10M= 40 Marks)		·
Q 6	If $y(x) = \sin ax + \cos ax$ then show that		
	$y_n = a^n \sqrt{1 + (-1)^n \sin 2ax} ,$	10	CO1
	where y_n denotes the n^{th} derivative of y with respect to x.		
Q 7	Find the area of the curvilinear triangle bounded by the parabolas $y^2 = 12x$, $x^2 = 12y$ and the circle $x^2 + y^2 = 45$ which lies outside the circle.		
	OR		
	If $m, n, a, b > 0$ then by using Beta function, prove that:	10	CO2
	$\int_{0}^{1} \frac{x^{m-1}(1-x)^{n-1}}{(a+bx)^{m+n}} dx = \frac{\beta(m,n)}{(a+b)^m a^n}.$		

Q 8	Show that the following differential equation		
	$(x^2 - 4xy - 2y^2)dx + (y^2 - 4xy - 2x^2)dy = 0,$	10	CO4
	is exact and hence solve it.		
Q 9	Find and classify the critical points of the following plane autonomous system as stable or unstable.	10	CO5
	$x'(t) = x^2 + y^2 - 6,$ $y'(t) = x^2 - y.$		
	SECTION-C (2Qx20M=40 Marks)		
Q 10	(i) The velocity vector field of an ideal fluid is given by	20	CO3
	$\overrightarrow{V}(x, y, z) = (y+z)\hat{\iota} + (z+x)\hat{j} + (x+y)\hat{k}.$		
	Show that \overrightarrow{V} is irrotational and incompressible.		
	(ii) Find the work done in moving a particle along the straight-line segments joining the points (0,0,0) to (1,0,0), then to (1,1,0) and finally to (1,1,1) under the force field $\vec{F} = (3x^2 + 6y)\hat{i} - 14yz\hat{j} + 20xz^2\hat{k}$.		
	OR		
	Verify Green's theorem in the plane for		
	$\oint_C [(3x^2 - 8y^2)dx + (4y - 6xy)dy],$		
	where <i>C</i> is the boundary described counter-clockwise of the triangle formed by the lines $x = 0$, $y = 0$ and $x + y = 1$.		
Q 11	(i) If x^n is an integrating factor of the differential equation		
	$(y-2x)^3 dx - x(1-xy) dy = 0.$	10+10	
	Then find n and hence solve the equation.		CO4
	(ii) Find the general solution of the following differential equation:		001
	$\frac{d^2y}{dx^2} - 3\frac{dy}{dx} + 2y = 2e^{-x} + 2\cos(2x+3).$		