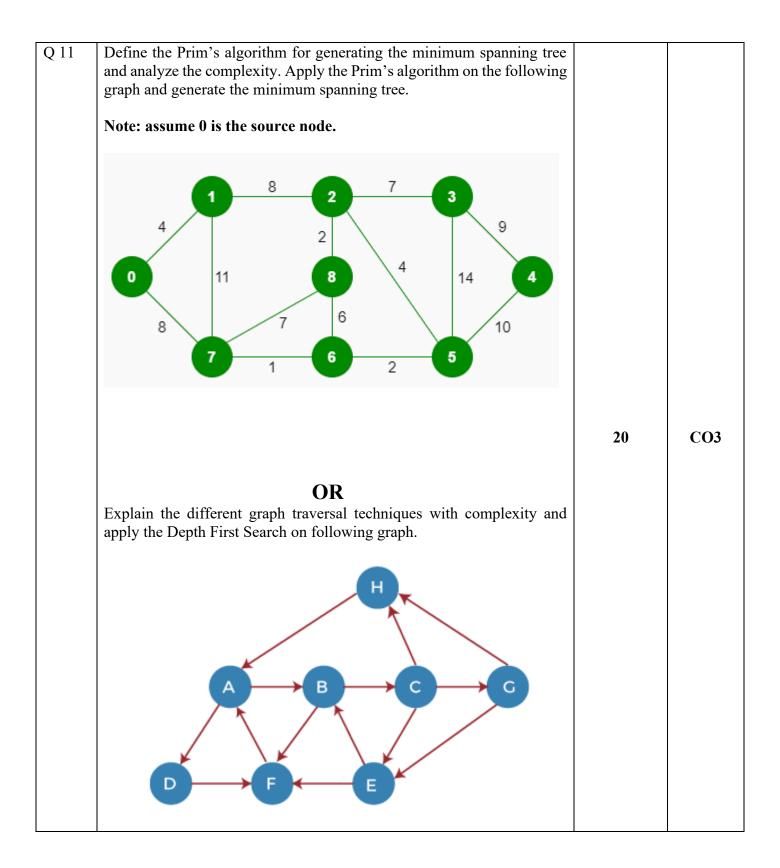
| Name: |
|-------|
|-------|

**Enrolment No:** 



## UPES End Semester Examination, Dec 2024


Course: Algorithm Design and Analysis Program: MTech Course Code: CSEG7028

Semester: 1<sup>st</sup> Time : 03 hrs. Max. Marks: 100

Instructions: Attempt all the questions.

| SECTION A<br>(5Qx4M=20Marks)<br>Note: Attempt all the questions. |                                                                                                                                                                                                                                        |       |     |  |  |  |  |
|------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------|-----|--|--|--|--|
| S. No.                                                           |                                                                                                                                                                                                                                        | Marks | СО  |  |  |  |  |
| Q 1                                                              | Solve the following recurrence relation using recursion tree method.<br>T(n) = T(n/3) + T(2n/3) + n                                                                                                                                    | 4     | CO2 |  |  |  |  |
| Q 2                                                              | Explain P, NP, NPC and NP-Hard.                                                                                                                                                                                                        | 4     | CO1 |  |  |  |  |
| Q 3                                                              | 1. $m(x) = 2^{x^2}$<br>2. $f(x) = e^{2x}$<br>3. $h(x) = e^x$<br>4. $g(x) = x^{10}$<br>5. $q(x) = x^5$<br>6. $n(x) = x^{\log(x)}$<br>7. $p(x) = x^{1/3}$<br>8. $k(x) = \log(x)$<br>Arrange all the above functions in increasing order. | 4     | CO3 |  |  |  |  |
| Q 4                                                              | Sort the array using Quick Sort.<br>< 4, 3, 1, 2, 5, 9, 7, 10, 6>                                                                                                                                                                      | 4     | CO3 |  |  |  |  |
| Q 5                                                              | Define the complexity of following function.<br>int F(int n) {<br>if (n <= 1) {<br>return n; }<br>return F(n - 1) + F(n - 2); }                                                                                                        | 4     | CO2 |  |  |  |  |

|      |                                                                                                                                                                                                                                                                                                                                                         |                     |         |                 |                  | ION E  |         |            |        |     |     |
|------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------|---------|-----------------|------------------|--------|---------|------------|--------|-----|-----|
|      |                                                                                                                                                                                                                                                                                                                                                         |                     | No      | · -             | x10M=<br>tempt a |        |         | ons.       |        |     |     |
| Q 6  | Note: Attempt all the questions.   Determine an LCS of 1, 0, 0, 1, 0, 1, 0, 1 and 0, 1, 0, 1, 1, 0, 1, 1, 0                                                                                                                                                                                                                                             |                     |         |                 |                  |        |         |            | 10     | CO3 |     |
| Q 7  | Explain the N-queen problem and provide 2 solutions for 8-queen problem.                                                                                                                                                                                                                                                                                |                     |         |                 |                  |        |         |            |        | 10  | CO1 |
| Q 8  | Explain and                                                                                                                                                                                                                                                                                                                                             | analyze the         | e comp  | lexity o        | of Knut          | h-Mori | ris-Pra | tt algorit | hm.    | 10  | CO1 |
| Q 9  | given file, co<br>evaluate the<br>process.                                                                                                                                                                                                                                                                                                              |                     |         |                 |                  |        |         |            |        |     |     |
|      |                                                                                                                                                                                                                                                                                                                                                         | Symbol<br>Frequency | a<br>10 | е<br>15         | i<br>12          | 0<br>3 | u<br>4  | s<br>13    | t<br>1 |     |     |
|      | OR                                                                                                                                                                                                                                                                                                                                                      |                     |         |                 |                  |        |         | 10         | CO4    |     |     |
|      | computer science and operations research, where the goal is to find an optimal way to schedule a set of jobs on one or more machines while minimizing some cost or maximizing some performance criteria. Write the algorithm based on Greedy strategy to schedule <i>n</i> jobs in single machine and assume the deadline & penalty for individual job. |                     |         |                 |                  |        |         |            |        |     |     |
|      |                                                                                                                                                                                                                                                                                                                                                         |                     | No      | (2Q<br>ote: Att | x20M=<br>tempt a |        |         | ons.       |        |     |     |
| Q 10 | Apply all <u>pa</u>                                                                                                                                                                                                                                                                                                                                     | ir shortest p       | A A     |                 | in foll          |        |         |            |        | 20  | CO4 |

