Name:

Enrolment No:

UPES End Semester Examination, December 2024

Course: B.Tech Program: CSE- All Specializations Course Code: CSEG3003 Semester: | Time : 03 hrs. Max. Marks: 100

Instructions: Calculator is Allowed. Make necessary assumptions if any information is missing. There is an internal choice in question number 9 and question number 11.

	SECTION A (5Qx4M=20Marks)		
S. No.		Mark s	СО
Q 1	Differentiate between the object space and image space method of detecting visible surface, give examples for each.	4	CO4
Q2	The flat shading gives realistic effects or is valid if is at infinity or is at infinity.	4	CO5
Q3	Define Fractals, mention two important characteristics of Fractals.	4	CO4
Q4	Explain how one ensures that relative replacement in viewport is same as that of window.	4	CO2
Q5	Explain with example why 8-connected approach is needed for seed fill algorithms.	4	CO2
	SECTION B		
	(4Qx10M= 40 Marks)		
Q6	a. Is OpenGL platform Independent? Explain.b. What is meant by resolution of an image.	5+5	CO1
Q7	For the given figure, calculate the pixel value at the centroid P of the triangle using Gourard Shading approach. The Figure shows the coordinate values and the color intensities at the vertices of the triangle.	10	CO5

	(100,100,16) A I=0 B (200,300,0) I=34		
Q8	 A computer graphics rendering system uses the Z-buffer algorithm to determine visible surfaces in a 3D scene. Consider a viewport of size 4×4 pixels with an initial Z-buffer value of +∞ for all pixels. The scene contains two triangles, T1 and T2, defined in screen space with their depth (Z-coordinate) values at the vertices as follows: Triangle T1: Vertices: V1= (1,1,0.5), V2= (3,1,0.3), V3= (2,3,0.4) Color: Red Triangle T2: Vertices: V4= (2,2,0.2), V5= (3,2,0.4), V6= (2,4,0.3) Color: Blue The triangles overlap in the screen space. The Z-buffer is used to compute visibility for each pixel. a. For each overlapping pixel, determine which triangle is visible based 	10	CO4
00	on their Z-values.b. Discuss two advantages and two limitations of the Z-buffer algorithm for visible surface detection.		
Q9	Consider the following window coordinates A(100, 10), B(160, 10) C(160, 40), D(100, 40). Find the visible portion of the line segments EF, GH and IJ using Cohen Sutherland algorithm E (50,0), F(70,80), G(120, 20),H(140, 80),I(120, 5),J(180, 30).	10	CO2

5 control points: U=[0,0,0,1,2,3,3,3]. b. An airplane's landing trajectory is modeled using The control points are: X 0 20 40 Y 50 40 20 Find the airplane's altitude at t=0.25 c. Establish relationship between blending functio geometic vector for a four degree beizer curve. Q11 a. Locate the position of the triangle A(2,4) B(4,4) reflection about a line x-2y=-4.	B(90,220), H(20,10) using inates of the wind in detail all the associated with th				
5 control points: U=[0,0,0,1,2,3,3,3]. b. An airplane's landing trajectory is modeled using The control points are: X 0 20 40 Y 50 40 20 Find the airplane's altitude at t=0.25 c. Establish relationship between blending functio geometic vector for a four degree beizer curve. Q11 a. Locate the position of the triangle A(2,4) B(4,7) reflection about a line x-2y=-4. b. State briefly how following transformations occ figure green one is original figure and red one is 0 1 0 1 0 1 0 1 0 2 0 20 0 20 0 20 0 20 0 20 0 1 1 1 1 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 0<)				
Y 50 40 20 Find the airplane's altitude at t=0.25 c. Establish relationship between blending functio geometic vector for a four degree beizer curve. Q11 a. Locate the position of the triangle A(2,4) B(4,1) reflection about a line x-2y=-4. b. State briefly how following transformations occ figure green one is original figure and red one is 0 1 0 1 0 0	 a. Validate if the following knot vector is valid for a cubic B-spline with 5 control points: U=[0,0,0,1,2,3,3,3]. b. An airplane's landing trajectory is modeled using a cubic beizer curve. 				
 Find the airplane's altitude at t=0.25 c. Establish relationship between blending function geometic vector for a four degree beizer curve. Q11 a. Locate the position of the triangle A(2,4) B(4, reflection about a line x-2y=-4. b. State briefly how following transformations occ figure green one is original figure and red one is Image: Content of the triangle A(2,4) and t	60	4+8+			
 c. Establish relationship between blending functio geometic vector for a four degree beizer curve. Q11 a. Locate the position of the triangle A(2,4) B(4,4) reflection about a line x-2y=-4. b. State briefly how following transformations occ figure green one is original figure and red one is Generation of the triangle A(2,4) B(4,4) reflection about a line x-2y=-4. b. State briefly how following transformations occ figure green one is original figure and red one is 	0	8	CO4		
	 c. Establish relationship between blending function, parameter and geometic vector for a four degree beizer curve. a. Locate the position of the triangle A(2,4) B(4,6) and C(2,6) after its reflection about a line x-2y=-4. b. State briefly how following transformations occurs, in the given 				
2 2) , F(3 2 2) G (3 2 1) H(2 2 1) about its diagonal(FD) p original by 45 degrees.	, C(3 1 1) ,D(2 1 1)), E(2	CO3		