Name:

Enrolment No:

UPES

End Semester Examination, December 2024

Course: INT BBA-MBA (FIN) Program: Portfolio Management Course Code: FINC8038

Semester: VII Time: 03 hrs. Max. Marks: 100

Instructions:

	SECTION A 10Qx2M=20Marks		
S. No.		Marks	СО
Q 1	Which of the following are most liquid in nature		
-	a. Bonds	2	COL
	b. Stocks	2	COI
	c. Fixed Assets		
Q 2	Risk-Return trade-off implies:		
	a. Minimization of risk		
	b. Maximization of risk	2	CO1
	c. Ignorance of risk		
	d. Optimization of risk		
Q 3	Which one of the following is an efficient portfolio?		
	a) Highest return at a particular level of risk.		
	b) Minimum risk for given levels of return.	2	CO1
	c) Higher return at the same risk of lower risk.		
	d) Lower return at the lower risk.		
Q 4	Which one of the following is an efficient portfolio?		
	a) Highest return at a particular level of risk.		
	b) Minimum risk for given levels of return.	2	CO1
	c) Higher return at the same risk of lower risk.		
	d) Lower return at the lower risk		
Q 5	A group of securities is known as		
	a. Investment		
	b. Portfolio	2	CO1
	c. Security		
	d. Gambling		
Q 6	According to the CAPM, which of the following is true about an asset with		
	a beta of 0?		
	a) It has no risk.	2	CO1
	b) It has only unsystematic risk.	-	
	c). It has the same expected return as the risk-free rate.		
	d) It has a higher expected return than the risk-free rate.		
Q 7	Diversification reduces	2	CO1

	a) Inflation risk.					
	b) Market risk.					
	c) Interest rate risk.					
	d) Unique risk.					
Q 8	Standard deviation ca					
	a. Risk of an investme					
	b. Return of an invest	2	CO1			
	c. Both a and b					
	d. None of a and b					
Q 9	SML stands for					
	a. Straight Margin Line				CO1	
	b. Security Market Li	-	001			
	c. Security Margin Li	ne				
Q10	Which of the following					
	a. Higher the Beta, lo	wer the risk			GO 4	
	b. Higher the Beta, hi	gher the risk		2	COI	
	c. Risk is constant					
	d. Beta 1s constant	C				
		SI	ECTION B			
	1	4Qx5	5M= 20 Marks		1	
Q 11	Suppose a share is cu	rrently selling at ₹2	20. An investor who is interested			
	in the share anticipate	es that the company	will pay a dividend of Rs 6 in	5	CO2	
	the next year. Moreov	C	002			
	year. Calculate the ex					
Q 12	Define risk and distinguish between systematic and unsystematic risk			5	CO2	
Q 13	What is beta? How it is interpreted?			5	CO2	
Q 14	What are the limitations of Modern Portfolio Theory?			5	CO2	
		SI	ECTION-C			
		3Qx1	0M=30 Marks			
Q 15	Critically evaluate the	e reason for the conf	flicting performance ranking by	10	CO3	
	Treynor and Sharpe?	Which ranking you	would prefer & why?	10	0.03	
Q 16	With the following in	formation, you are 1	required to calculate the Beta of a			
	stock using regression					
	$\Sigma XY = 2160.49; \Sigma X =$	10	005			
	Where, Y is the stock	return and X is the	market return.			
Q 17	From the following in	nformation you are r	required to calculate the risk.			
	Return	Probability		10	G03	
				10	003	
	30	0.20				
1	11 1				1	

	40	0.40				
	50	0.30				
	60	0.20				
	70	0.10				
			SECTION-I 20x15M= 30 M) arks		
	Attempt any	two				
Q 18	You are considering two assets with the following characteristics: $E(R1) = .15 \sigma 1 = .10 W1 = .5$ $E(R2) = .20 \sigma 2 = .20 W2 = .5$ Compute the mean and standard deviation of two portfolios if r1,2 = 0.40 and -0.60, respectively. Plot the two portfolios on a risk-return graph and critically interpret the results.					CO4
Q 19	Sunil owned f amount and w Security A B C D E What is the ex	Tive securities at the britter of the following cur Share amount 150 100 85 90 125 Spected return on Sur	Design in the segment and expectedCurrent Price4030203040and the second secon	Ear in the followingend-of-year price:Expected year- end price5540253545the year?	15	CO4
Q 20	What are the b adopting the C context of fina	basic assumptions of CAPM model in port ance professional?	CAPM? What ar folio managemen	e the advantage of t? Anlayse in	15	CO4