Name: Enrolm	ent No:					
		UPES				
Course	End Semester Exa Financial Econometrics	mination, December 2024				
Course	. Financiai Econometrics	Se	mester: III			
Progra	m: <u>MBA (Finance Management)</u>					
		Ti	me: 03 hrs.			
Course	Code: <u>FINC8009</u>	Μ	lax. Marks: 10	00		
Instruc	tions:					
	This is a CLOSE BOOK exam.					
•	All questions are mandatory.					
•	The use of laptops, internet access, mobile pl	hones, and other electronic device	es is strictly pro	ohibited		
	during the exam.					
•	Use of unfair means will result in immediate	disciplinary action.				
SECTION A 10Qx2M=20Marks						
S. No.	Statement of question.		Marks	CO		
Q 1.1	What is the primary consequence of multic	collinearity in OLS regression?				
	a) It reduces the overall model fit					
	b) It inflates the standard errors of coeffici	ent estimates	2	CO1		
	c) It increases the Durbin-Watson statistic		-	001		
	d) It makes the dependent variable unstable	e				
Q 1.2	What is the primary implication of omittee	l variable in OLS regression?				
	a) It leads to a decrease in R-squared value					
	b) It makes the standard errors of coefficie	nts biased	2	CO1		
	c) It makes the OLS coefficient estimates b	bias	-	CO1		
	d) It results in higher heteroscedasticity					
Q 1.3	Which test is commonly used to detect aut	ocorrelation?				
	a) Breusch-Pagan test					
	b) Augmented Dickey-Fuller test		2	CO1		
	c) Durbin-Watson test		-			
	d) Variance Inflation Factor (VIF)					
Q 1.4	Which of the following tests is used to det	ect heteroscedasticity?				
	a) Durbin-Watson test		2	CO1		
	b) Breusch-Pagan test					

	c) Variance Inflation Factor (VIF)d) Goodness of Fit		
Q 1.5	Autocorrelation is most commonly observed in which type of data? a) Cross-sectional data b) Panel data c) Time series data d) Experimental data	2	CO1
Q 1.6	In a multivariate OLS regression, which test is used to check the overall significance of the model? a) t-test b) F-test c) Wald test d) Breusch-Pagan test	2	CO1
Q 1.7	 In an OLS regression, if R²= 0.85, what does this indicate? a) 85% of the variance in the dependent variable is explained by the independent variables b) The model has 85% accuracy c) 85% of the independent variables are significant d) The residuals are 85% correlated 	2	CO1
Q 1.8	 Which of the following indicates multicollinearity in OLS? a) High R-squared value b) Low Variance Inflation Factor (VIF) c) High Variance Inflation Factor (VIF) d) Errors correlated with independent variables 	2	CO1
Q 1.9	 When adding irrelevant predictors to a regression model, the adjusted R2: a) Always increases b) Always decreases c) Increases only if the predictors improve the model d) Remains unchanged 	2	CO1
Q 1.10	 In a regression model, if the F-statistic is very large, it implies that: a) All the coefficients are statistically insignificant b) At least one of the coefficients is statistically significant c) The residuals are normally distributed d) The R-squared value is 0 	2	CO1

			SECTIO 4Qx5M= 20			
Q Write a	short-no	tes on the fol				
-	utocorrela		0		5	CO2
3 State the	e differenc	e between Pa	arameter and Estin	nates	5	CO2
	ectional da				5	CO2
		sion curve			3	
	on regress				5	CO2
·			SECTION 3Qx10M=30			
Q Stateme	nt of ques	tion	L			
		the assumpti through OLS		stimation of simple linear	10	CO3
7 What ha	appens to		nator, when it is a	estimated in the presence	10	CO3
Estimat using O Comme	LS; that is <i>birthw</i> nt on the c	Birthweight (in ounces)10913312912613411814086121129ionship betwees, obtain the inweight = β_0 direction of th	thercept and slope + β_1 mother ed the relationship. Exp	d mother-education estimates in the equation $ucation + u_i$ plain the interpretation of t predicted to be if the If	10	CO3

	SECTION-D 2Qx15M= 30 Marks		
Q	Statement of question		
9	 Consider an equation to explain salaries of CEOs in terms of annual firm sales, return on equity (roe, in percentage form), and return on the firm's stock (ros, in percentage form): log(salary) = β₀ + β₁ log(sales) + β₂roe + β₃ros + u (i) In terms of the model parameters, state the null hypothesis that, after controlling for sales and roe, ros has no effect on CEO salary. State the alternative that better stock market performance increases a CEO's salary. The following equation was obtained by OLS using CEOSAL1 data: 		
	$log(salary) = 4.32 + .280 log(sales) + .0174 roe + .00024 ros$ (.32) (.035) (.0041) (.00054) $N = 209, R^{2} = .283$		
	(ii) Explain the interpretation of coefficient of sales and roe in the above model. (iii) Test the null hypothesis that sales have no effect on salary against the alternative that sales has a positive effect. Carry out the test at the 5% significance level. ($t_c = 1.645$)	15	CO4
	(iii) By what percentage is salary predicted to increase if ros increases by 50 points? Does ros have a practically large effect on salary? (iv) Test the null hypothesis that ros has no effect on salary against the alternative that ros has a positive effect. Carry out the test at the 5% significance level. ($t_c = 1.645$) (v) Would you include ros in a final model explaining CEO compensation in terms of firm performance? Explain.		
10	Explain the mechanism involved in doing the Durbin Watson D-test to detect autocorrelation in a series.In studying the movement in the production workers' share in the value added (i.e., labor's share) for 30 years, the following models were considered by a researcher. Check the serial correlation in model A and model B?Model A: labour share = $0.4529 - 0.0041t$ $R^2 = 0.5284$ (d =	15	CO4
	$(D_L = 1.352, D_U = 1.489)$		

$(D_L = 1.284, D_U = 1.567)$ Or, What do you understand by RUN? Explain the steps involved in RUN test to detect the autocorrelation in time-series. Apply the test to the following sequence of residuals obtained from daily stock returns to assess whether the series exhibits randomness or autocorrelation.	
What do you understand by RUN? Explain the steps involved in RUN test to detect the autocorrelation in time-series. Apply the test to the following sequence of residuals obtained from daily stock returns to assess whether	
to detect the autocorrelation in time-series. Apply the test to the following sequence of residuals obtained from daily stock returns to assess whether	
sequence of residuals obtained from daily stock returns to assess whether	
1	
the series exhibits randomness or autocorrelation	
the series exhibits fandomness of autocorrelation.	
+, +, +, -, -, -, -, -, +, +, +, +, -, -, +, + -, +, +	