Name:

Enrolment No:

UPES End Semester Examination, Dec 2024

Course: Optimization Techniques
Program: BBA All/ Int. BBA MBA
Course Code: DSIT2012

Semester: III Time: 03 hrs. Max. Marks: 100

Instructions: 1. Attempt all the questions. 2. Simple calculator is allowed.

SECTION A 10Ox2M=20Marks

C M.	10Qx2M=20Marks		60
S. No.		Marks	CO
Q 1	Multiple Choice Questions.		CO1
i.	 The objective function of a linear programming problem is: A. a constraint B. function to be optimized C. A relation between the variables D. None of these 	2	
ii.	 The linear inequalities or equations or restrictions on the variables of a linear programming problem are called: A. a constraint B. Decision variables C. Objective function D. None of the above 	2	
iii.	The transportation problem is basically a A. Maximization model B. Minimization model C. Transshipment problem D. Iconic model	2	
iv.	 In a transportation problem where the demand or requirement is equal to the available resource is known as A. Balanced transportation problem B. Regular transportation problem C. Resource allocation transportation problem D. Simple transportation model 	2	
v.	A time series consists of: A. Short-term variations B. Long-term variations	2	

	C. Irregular variations		
	D. All of the above		
vi.	For the LP problem Minimize $z = 2x + 3y$ the coordinates of the corner		
V1.	points of the bounded feasible region are $A(3, 3)$, $B(20,3)$, $C(20, 10)$,		
	D(18, 12) and E(12, 12). The minimum value of z is		
	D(18, 12) and $E(12, 12)$. The minimum value of 2 is A. 49	2	
	B. 15	2	
	B. 15 C. 10		
	D. 05		
vii.			
VII.	The purpose of simple linear regression analysis is to: A. Predict one variable from another variable		
	B. Replace points on a scatter diagram by a straight-line	2	
	C. Measure the degree to which two variables are linearly associated		
	D. Obtain the expected value of the independent random variable for		
	a given value of the dependent variable		
viii.	If the two series move in reverse directions and the variations in their		
	values are always proportionate, it is said to be:		
	A. Negative correlation	2	
	B. Positive correlation	-	
	C. Perfect negative correlation		
	D. Perfect positive correlation		
ix.	Which term is most closely associated with simple exponential smoothing?		
	A. seasonal relative		
	B. moving average	2	
	C. trend		
	D. predictor variable		
x.	Which of the following is not an integer linear programming problem?		
	A. pure integer		
	B. Mixed Integer	2	
	C. 0-1integer		
	D. Continuous		
	SECTION B		
	4Qx5M=20 Marks		
			CO2
2	A manufacturer has employed 5 skilled men and 10 semi-skilled men and		
<u>_</u>	makes two models A and B of an article. The making of one item of model		
	A requires 2 h work by a skilled man and 2 h work by a semi-skilled man.		
	One item of model B requires 1 h by a skilled man and 3 h by a semi-skilled		
	man. No man is expected to work more than 8 h per day. The	5	
		3	
	manufacturer's profit on an item of model A is Rs. 15 and on an item of model B is Ba. 10. How many items of each model should be made per day		
	model B is Rs. 10. How many items of each model should be made per day		
	to maximize daily profit? Formulate and identify the key components of		
2	the above LPP.		
3	How is linear programming used in supply chain management? Give an	5	
	example of a supply chain decision that can be modeled as an LPP.		

	OR		
	What is simulation in supply chain management? Briefly describe, what are the common types of simulations used in SCM?		
4	 Corner points of the bounded feasible region for an LP problem are (0, 4), (6, 0), (12, 0), (12, 16) and (0, 10). Let z=8x + 12y be the objective function. Calculate the following: (i) Minimum value of z occurs at 	5	
	(i) Maximum value of z occurs at (ii) Maximum of z is (iv) Minimum of z is		
5	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	5	
	SECTION-C		
	3Qx10M=30 Marks		CO3
6	Solve the following LPP graphically: Minimize $Z = 5x + 10y$ subject to the constraints $x + 2y \le 120$ $x + y \ge 60$, $x - 2y > 0$ and $x, y \ge 0$.ORSolve the following IPP by cutting plane method: Maximize $z = x1 + x2$ subject to $3x1 + 2x2 \le 5$ $x2 \le 2$ $x1, x2 \ge 0$ and are integers.	10	
7	Find the initial basic feasible solution of the following transportation problem: I II A 1 2 6 7 B 0 4 2 12 C 3 1 5 11 Supply 10 10 10 Using (i) Vogel's approximation method (ii) Least Cost Method OR A logistics company plans to establish warehouses to serve customers. The warehouse capacity is limited, and customer demands vary. Costs include	10	

	fixed sature						
	lixed setup cos	sis for warel	nouses and transpo	ortation o	costs per unit demand	•	
		Warehouse Fixed Cost (Rs.) Capacity (Rs.)					
		W1	100000	500			
		W2	120000	700			
	Custo	omer Dem	and Distance to				
	C1	300	20	15			
	C2	400	25	10			
	Use the concep						
8	A coffee shop	chain want	s to understand h	ow diffe	rent factors impact its	5	
			ct data over a 12-r				
					month on advertising	g	
	(in thousands of	- ·	. 1		· · · · ·		
			The monthly reven	nue from	sales (in thousands of	f	
	dollars).	· /	-		`		
	/	lation betwe	en these two varia	ables and	l comment on it.		
				1			
		Month	Advertising	Month			
		1	Expenditure (\$X\$) 5	Sales (\$Y 20	(\$)	10	
		2	10	20		10	
		3	15	27			
		4	20	30			
		5	25	36			
		6	30	40			
		7	35	44			
		8	40	47			
		9	45	50			
		10	50	55 58			
		11 12	<u>55</u> 60	62			
		14		TION-D	I	1	
			2Qx15M				
							CO4
9	A manufacturi	ng company	v produces two tvi	pes of pr	oducts, Product A and	1	
-					fit of \$30, while each		
			•	-	e company wants to		
					production quantities		
					ion is limited by the	_	
					naterials, and machine		
	time. The Reso						
	1. Labor Hours						
	unit of Produc	r					
	hours available	e.					

10	and each units of ra 3. Machin and each 1100 hou Formulate The folloo the Direct		uct B s avai ch un duct 1 ne tim olve i gives lustrie	require lable. it of Pro B require avail it using the nur es betw	es 5 un oduct <i>A</i> ires 6 1 lable. <u>g simpl</u> nber of veen 20	its. The A requin nours. 7 ex metl f small-	e compares 5 ho The com hod. -scale u	any has ours of mpany nits re	s a total machin has a gistere	d of 800 ne time, total of d with		
	(000)	× ·										
					OR							
	A factory works a 24-hour day, 7-day week in producing four products.Since only one product can be produced at a time the factory operates asystem where, throughout one day, the same product is produced (and thenthe next day either the same product is produced, or the factory produces adifferent product). The rate of production is:Product1No. of units produced per hour worked100250190150									15		
	Product	the follow		ata 15 a		e: and (uni	its) for a	each da	y of the	week		
		(units)		1	2	3	4	5	6	7		
	$\frac{1}{2}$	5000 7000		1500 4000	1700 500	1900	1000	2000	500 1000	500 2000		
	3	9000		2000	2000	3000	2000	2000	2000	500		
	4 8000 3000 2000 2000 1000 500 500											
	Product 3 was produced on day 0. The factory is not allowed to be idle (i.e. one of the four products must be produced each day). Stockouts are not allowed. At the end of day 7 there must be (for each product) at least 1750 units in stock. If the cost of holding stock is £1.50 per unit for products 1 and 2 but £2.50 per unit for products 3 and 4 (based on the stock held at the end of each day) formulate and solve the problem of planning the production for the next week as an integer program in which all the constraints are linear.											