Name:

Enrolment No:

UNIVERSITY OF PETROLEUM AND ENERGY STUDIES End Semester Examination, Dec 2024

Course: Renewable Energy Planning and Economics Program: BBA (Green Energy Business) Course Code: OGET2011_3

Semester: 3 Time: 03 hrs Max. Marks: 100

SECTION A 10Qx2M=20Marks Note – Fill in the Blanks (One word answer)

S. No.		Mar ks	СО
1	What is the primary advantage of renewable energy resources compared to fossil fuels?A. Higher energy densityB. Lower initial costC. Reduced environmental impactD. Easier storage	[2]	CO1
2	Which country is currently the global leader in solar power capacity?A. United StatesB. ChinaC. GermanyD. India	[2]	CO1
3	Which of these renewable resources is primarily used for generating electricity in areas with volcanic activity?A. BiomassB. GeothermalC. WindD. Hydropower	[2]	CO1
4	 What is the main barrier to the widespread adoption of renewable energy technologies in many countries? A. Lack of scientific knowledge B. High installation costs and infrastructure requirements C. Low efficiency of renewable sources D. Scarcity of renewable resources 	[2]	CO1

5	Which energy storage technology is often paired with renewable energy sources to ensure a stable energy supply?A. Nuclear reactorsB. Thermal storageC. BatteriesD. Biomass gasifiers	[2]	C01
6	Which renewable energy source has the highest growth rate globally due to declining costs and increased efficiency?A. SolarB. BiomassC. HydropowerD. Geothermal	[2]	C01
7	The term "grid parity" refers to: A. When renewable energy reaches the same cost as fossil fuels for electricity generation B. When all energy sources contribute equally to the grid C. The balance of energy generation and consumption D. A target capacity for renewable energy on the grid	[2]	CO1
8	Which of the following factors most directly affects the Levelized Cost of Energy (LCOE) for renewable energy projects?A. Fuel costsB. Carbon tax ratesC. Capital investment costsD. Government subsidies for fossil fuels	[2]	CO1
9	 The economic feasibility of solar and wind energy projects has improved significantly over recent years due to: A. Rising costs of fossil fuels B. Advancements in energy storage technology C. Declining capital costs for equipment D. Introduction of carbon taxes 	[2]	C01
10	Which economic measure is often used to evaluate the long-term profitability of a renewable energy project?A. Payback PeriodB. Net Present Value (NPV)C. Simple Interest RateD. Carbon Offset	[2]	C01

SECTION B				
4Qx5M= 20 Marks				
Q11	What are the major roadblocks to India's Renewable Energy Transition?	[5]	CO2	
Q12	Why do governments provide subsidies for renewable energy? How do these subsidies help reduce costs?	[5]	CO2	
Q13	What are the regulatory and policy factors for the renewable energy development in the country?	[5]	CO2	
Q14	List three economic benefits of using renewable energy compared to fossil fuels.	[5]	CO2	
SECTION-C 3Qx10M=30 Marks				
Q15	A renewable energy company uses exponential smoothing to forecast daily solar power generation. If the actual generation on Day 1 was 100 MW and the forecast was 95 MW, calculate the forecast for Day 2 using a smoothing factor (α) of 0.2. Discuss how the choice of the smoothing factor impacts the accuracy and responsiveness of the forecasting model in the context of renewable energy variability.	[10]	CO3	
Q16	A solar power plant and a wind farm supply electricity to a grid. The maximum demand from the solar power plant is 50 MW, while the wind farm's maximum demand is 70 MW. However, their combined maximum demand on the grid at any point in time is 100 MW. Calculate the diversity factor for these renewable energy sources and discuss its significance in optimizing grid capacity planning for renewable energy integration.	[10]	CO3	
Q17	A biomass power plant consumes 500,000 kg of biomass fuel per day with a calorific value of 3,200 kcal/kg. The plant generates 40 MW of electricity and operates for 24 hours a day. Calculate the heat rate of the plant in kcal/kWh and interpret the result. Additionally, explain how improving the heat rate can impact the cost-effectiveness and sustainability of biomass-based power generation.	[10]	CO3	
SECTION-D				
2Qx15M= 30 Marks				

The electricity tariff calculation for a 10 MW solar PV plant in Rajasthan involves several	
key factors, including capital costs, operation and maintenance (O&M) expenses, debt	
servicing, and desired returns on investment. The plant is expected to operate for 25 years	
with a capacity utilization factor (CUF) of 20%, generating 17,520 MWh annually. The	
total capital cost of the plant is ₹45 crore, with 70% of the cost financed through debt and	
30% through equity. The annual debt servicing cost is ₹5.13 crore, based on an 8% interest	
rate and a 10-year repayment period. Additionally, the plant incurs ₹1 crore annually in	
O&M costs. To ensure financial viability, the total annual revenue requirement, covering	
debt servicing, O&M costs, and a 15% return on equity (₹2.025 crore), amounts to ₹8.155	
crore.	
To calculate the tariff, the total annual revenue requirement is divided by the total annual	
energy generation, resulting in a tariff of $\gtrless 4.65$ per kWh. This tariff ensures that the plant	
can cover its costs, provide a reasonable return on investment, and remain financially	
sustainable over its 25-year operational life. The calculation highlights the importance of	
balancing capital and operational costs, financing structure, and expected returns to	
determine a tariff that supports both the developers' financial goals and the economic	
feasibility of the project. This tariff plays a crucial role in negotiations with utilities and	
helps ensure the long-term success of the solar PV plant.	
	CO 4
	CO 4
Q 18 - How does the capital cost structure (debt vs. equity financing) impact the tariff	
calculation for a solar PV plant? Explain the role of return on equity and debt servicing in	
determining the electricity tariff for a solar power project.	
O 19 - What are the key factors that a solar PV plant developer should consider when	
determining the electricity tariff for a project, and how can these factors influence the	
financial viability and competitiveness of the plant in the renewable energy market?	