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ABSTRACT 

 
Mathematical modeling is a significant tool for studying the behavior of 

biological systems, which are dynamical in nature. The parameters of the 

biological system undergo changes due to the dynamical nature and in due 

course of time, the system will become adaptive to these changes.  The 

mathematical study of biological systems makes us understand several 

questions dealing with the growth of the biological organisms, interactions 

among them, stability of the system, etc., making us derive a complete picture 

of the system at a single instance. In the literature, one can find several 

mathematical models that are developed and successfully implemented in 

several areas of biology such as ecology and ecosystems, cell organization, 

evolution and diversity, growth and development, Genome expression, cancer 

modeling, etc. 

 

In this thesis, the main emphasis was on the concept of prey-predator modeling. 

Prey-predator modeling is widely applied in the study of bio-systems and 

ecosystems. In these systems, the species always compete, grow and disappear 

during the process of seeking resources to maintain their very existence. Such 

models have a variety of applications in the study of consumer-resource, plant-

herbivore, tumor cells-immune, susceptible-infectious-recovered, and parasite-

host systems.  
 

The study discusses the computational dynamics of the chaotic cancer model in 

three dimensions, Nicholson-Bailey models as well as Rosenzweig – Macarthur 

prey-predator models and investigates the dynamics of these systems and their 

variants using qualitative analysis.  

 

In the study of nonlinear three-dimensional cancer model, the effect of 𝛼, 𝛽,  and 

𝛾 parameters on the behavior of the system involving nonlinear interactions 

among the tumor cells 𝑥(𝑡), healthy host cells 𝑦(𝑡), and effector immune cells 

𝑧(𝑡) interacting in a single tumor cell compartment was investigated. The study 

reveals that the model exhibits chaotic behavior for a certain range of positive 
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parameters 𝛼, 𝛽, and 𝛾 thereby establishing that all three parameters are very 

sensitive to the system.  

   

In the computational dynamics of Nicholson-Bailey models, a very popular 

population-dynamics model, the consequences, when the range of the system 

parameters is extended from positive real numbers to real numbers are studied. 

The existence of chaos, periodic solutions, and stable/unstable equilibriums in 

the system was investigated. In addition to the study of the classical model, the 

study further investigated the dynamics of the scaled and noisy models designed 

from the classical Nicholson-Bailey model. The bilateral symmetry in fixed 

points was obtained and several interesting results on the chaotic and periodic 

solutions of the models were observed. 

 

The computational study of the Rosenzweig-Macarthur prey-predator model, 

one of the popular models in ecological dynamics, was conducted and the model 

was studied by considering the parameters as complex numbers instead of 

positive real numbers. Also, different functional responses from both prey and 

predator perspectives were considered and compared the results.      
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CHAPTER 1. INTRODUCTION 
 

1.1 Introduction 
 

 

Mathematical biology is an applied branch of science for understanding, 

representing and modeling biological processes by employing the tools of 

applied mathematics. It makes use of theoretical analysis and mathematical 

models to get insight into the principles governing the structure, development, 

and behavior of the systems. Mathematical biosciences emerged as an 

interdisciplinary science with significant contributions in the allied fields of 

biological sciences and medicine from the experts of various disciplines like 

mathematics, physics, and life sciences. 

 

The impact of mathematics on biological research is evident from the scientific 

literature available. Mathematics has influenced almost all the areas of research 

in biology like cell structure and function, ecology, ecosystems, genetics, 

marine biology, immune system, DNA analysis, organism function and disease, 

neurobiology, plant biology and agriculture, infectious diseases, cellular 

automata, and cancer modeling[1]. The mathematical study of the above 

systems is helping the biological community to gain sufficient understanding, 

which is further used in the areas of medicine, artificial healthcare aids, and 

decision making concerned with the systems.  
 

Most of the biological systems are complex in nature. Most of the components 

in the biological systems exhibit multiple ways of interactions leaving no scope 

to define proper rules of possible interactions. Examples of complex systems 

include living cells, organisms, ecosystems, the human brain, etc. There exist 

several dependencies, competitions, relationships among the components of the 

system and components with the external environment, which are very difficult  
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to comprehend. Most of these systems exhibit properties like nonlinearity, 

emergence, and adaptation. Modern scientists are relying on the dynamical 

systems approach to study complex systems.    
 
 

In mathematical models, Linear, static and deterministic models are usually 

easier to handle than non-linear, dynamic, and stochastic models. Continuous-

variate models appear to be easier to handle than the discrete variate models, 

due to the development of differential equations. However, in absence of 

analytical solutions, one needs to transform a continuous model into a discrete 

model and handle them numerically [2].  
 

There is a large scope for computational techniques while dealing with discrete 

mathematical models.  
 

1.2 Dynamical Systems 
 

 

A system whose state changes with time over a state space based on a designated 

rule is a dynamical system. Mathematically, it can be defined as a state-space 𝑋, 

a set of times 𝑇, and a rule 𝑅 that defines how the state evolves over time. Here                

𝑅: 𝑋 ×  𝑇 → 𝑋.  Dynamical system involves the evolution of something over 

time. The variables describing the state of a system are state variables. A state- 

space comprises all possible state variables. The dynamical system’s dimension 

is dependent on the count of the state variables. The state space can be 

continuous or discrete. The continuous finite-dimensional state space is known 

as phase space. The system whose state evolves through a continuous-time is a 

continuous dynamical system and the system whose state evolves through a 

discrete-time is a discrete dynamical system.  
 

Dynamical systems study has significant applications in the fields of biology, 

physics, sociology, engineering, and economics.  Dynamical systems remain as 

the central idea of chaos theory, dynamics of logistic maps, bifurcation analysis, 

and fractals.    
 

Henri Poincaré founded the dynamical systems theory. He compiled several 

interesting results in his research monographs titled ‘New methods of celestial 

mechanics’ and ‘Lectures on celestial mechanics’ [3], [4]. He studied the 
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behavior of solutions to the problem related to three-body motion based on the 

above results. He proposed a famous ‘Recurrence theorem’ stating “dynamical 

systems returns nearer to their initial state after a finite interval of time which 

may be sufficiently long”. Aleksandr Lyapunov developed the modern theory 

of stability of dynamical systems. He developed several approximation 

methods, which help one to get insight into the stability of ODEs.  
 

The evolutionary rule in a dynamical system is generally a relation defined in 

terms of differential or difference equation. To get the future state of the system, 

this relation is iterated by incrementing time step. This process is known as 

finding the solution of the system. The set of all future positions obtained upon 

solving the system under certain initial conditions is known as trajectory.  

Previously, the task of finding the trajectory also known as orbit used to be a 

very tedious task involving the application of several mathematical 

sophisticated techniques but these days this task is simplified by implementing 

various numerical techniques on computers. Obtaining the trajectory is 

sufficient for understanding most of the simple dynamical systems. The study 

of dynamical systems introduced new theories like Chaos and Bifurcation. 

 

1.3 Chaos 
 

The chaotic theory deals with complex systems whose behavior becomes quite 

unpredictable and appears more random. Such systems are more sensitive to 

even slight alterations in the system’s initial values. The behavior of such 

systems can be predicted only up to a certain extent and after some time, these 

become unpredictable by exhibiting random behavior. The time up to which 

these systems can be accurately predicted is dependent on factors such as 

tolerable uncertainty in predicting, accurate measurement in the current state, 

and Lyapunov time. Understanding the chaotic behavior of the systems is very 

important for a better understanding and decision-making. The chaotic behavior 

is most common in real-world systems like weather and climate. It has 

numerous applications in the areas of computer science, Biology, Finance, 

Economics, Engineering, Physics, and political science.  
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1.4 Bifurcation 
 

Henri Poincaré introduced the concept of bifurcation. The Bifurcation theory 

deals with the sudden qualitative changes in the system that occurred due to 

small changes in the system parameters known as bifurcation parameters. 

Bifurcation can be noticed in both continuous and discrete dynamical systems. 

Bifurcation is further classified as local and global. The deviations in local 

stability properties of equilibria and periodic orbits can be studied for the 

understanding of local bifurcations whereas the study of stability at equilibria 

cannot be helpful to completely understand global bifurcation in the systems 

where there is a collision of larger invariant sets among themselves or with the 

equilibria of the system.  
 

1.5  Stability 
 

The stability theory deals with the dynamical systems stability. Stability theory 

helps us to understand the behavior of solutions of differential equations with 

slight changes in their initial conditions. Dynamical systems study addresses the 

long-standing behavior of systems for which one has to study the trajectories 

and asymptotic properties. The behavior exhibited by periodic orbits and fixed 

points is to be studied.  After understanding a particular orbit, the natural 

question is what happens to the behavior of the system if we bring a small 

change in the initial condition. Stability theory deals with such investigations. 

If a nearby orbit stays close to a given orbit indefinitely, the orbit is known as a 

stable orbit. If the nearby orbit converges to the given orbit, then the orbit is 

asymptotically stable. The orbit given is known as attracting. 
 

1.6 Linearization 
 

Most of the real systems are nonlinear in nature. One cannot precisely find the 

solutions of nonlinear systems. The linearization method gives us an insight into 

the system’s behavior in the neighborhood of equilibria. This technique helps 

approximate nonlinear differential equations as a system of linear ODEs. In the 

stability analysis of autonomous systems, the Jacobian at hyperbolic 

equilibrium is constructed, its Eigenvalues are considered, and the                     

equilibrium’s nature is obtained. The linearization theorem also referred to as 
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the Hartman-Grobman theorem is significant in dynamical systems study. As 

per this theorem, the system behavior at hyperbolic equilibrium is similar to the 

behavior of its linearization at this equilibrium qualitatively. The behavior 

around the equilibria of the system can be studied by the linearization technique 

[5].  
 

1.7 Dynamical Systems in Biology 
 

 

Most of the questions concerning the evolution and long-term stability of highly 

complex biological systems can be answered effectively by the dynamical 

systems approach. The dynamical systems theory is broadly applied in the areas 

of biology and medicine. Various mathematical tools are successfully 

implemented to study biological problems related to cancer research, population 

biology, epidemiology, immunology, competition among species, harvesting, 

host-parasite systems, etc. 
 

 

Ecology is one of the significant areas where one finds the vigorous application 

of dynamical systems study. The ecosystem comprises living organisms and 

non-living components in their environment. There will be interactions among 

the living organisms as well as organisms with its environment. These 

interactions may range from simple to very complex. Ecosystems are influenced 

both by external components which are not controllable and internal factors 

which are controllable up to a certain extent. These systems are dynamic as they 

are subjected to various changes in terms of periodic disturbances and these 

systems always try to overcome these disturbances. The studies in ecology deal 

with population dynamics, fisheries, competitions among species, epidemics, 

group dynamics, food webs, and effects of climatic changes.  
 
 

Several growth models like logistic, exponential, and structured population 

models were developed for studying the dynamics of the species population. All 

these models come under population ecology. The main objective of such 

studies is to understand how the populations are interacting with their 

environment and how their respective sizes vary with respect to space and time. 

Several studies under population ecology are concerned with the habitation and 

resource needed for individual species, their behaviors as groups, and their 
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growth. The conditions for abundant growth or extinction are also an interesting 

part of the study.   
 

In an ecosystem, one comes across several species competing for the same 

resources. Prey-predator models, host-pathogen models, host-parasitoid 

models, competition, and mutualism models study the dynamics of community 

ecology. Community ecology investigates how the populations interact with one 

another and how they share common resources.   
 

For instance, it is a well-known fact that resources are not abundant in nature 

and the life on our plant is to survive on the available limited resources.  Due to 

industrialization and urbanization, one can see that populations are growing in 

such a fashion that the available resources could not cater to their needs. So, a 

proper understanding of the system is required for maintaining a proper balance 

in the system which is possible using mathematical modeling.   
 

1.8 Some Studies in Literature 
 

Lotka and Volterra had developed their models using differential equations, 

which deal with predator-prey, and competition-like situations [6], [7]. These 

are considered as fundamental models of mathematical ecology. Several authors 

have adopted the concept of predator-prey modeling for studying tumors and 

the immune system [8]–[16]. Similarly, significant research contributions to 

mathematical models in biology using host-parasite or predator-prey modeling 

were available in the literature. Some researchers have studied a variety of 

problems and conducted the stability analysis thereby further investigating the 

bifurcations and exhibition of chaos in the respective systems of their studies  

[17]–[31].  
  

1.9 Objectives of the Thesis 
 

In the literature, one can find many well-developed mathematical models in the 

domains of infectious diseases, predator/prey or host/parasite systems, 

competitive species, and competition & harvesting. Researchers from various 

domains study, implement and extend these models while investigating 

problems of their domain.  Biological species always aim for their existence and 
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engage in the quest for resources. Based on the application, prey-predator 

models can be viewed in different forms such as consumer-resource, herbivore-

plant, host-parasite, tumor cells-immune systems, and susceptibles-infectors, 

etc. As these processes involve in loose-win-like situations, these models can 

be effectively implemented outside the ecosystems as well.   
 

The wide variety of applications of dynamical system study of biological 

systems provided motivation for the qualitative study of various mathematical 

models in biology. The current work aimed at investigating 
 

(1) The computational dynamics of a chaotic cancer model in three 

dimensions.  

(2) The computational dynamics of the Nicholson-Bailey model, its scaled 

and noisy models. 

(3) To study Rosenzweig-Macarthur predator-prey models by considering 

the parameters as complex numbers. 

(4) To investigate stability, periodic solutions, bifurcations, and chaotic 

behavior in the above models. 
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CHAPTER 2. REVIEW OF LITERATURE, 
MATHEMATICAL TOOLS AND METHODS. 

 

2.1 Introduction 
 

Mathematical modeling is a tool of great significance in the study of the 

dynamics of biological systems. Numerous mathematical models have been 

constructed and successfully implemented in various studies related to the 

domains of ecology, population dynamics, genetics, epidemics, and medicine. 

These models are mathematical equations, whose study helps us to understand 

and predict the underlying natural phenomena such as the behavior of 

organisms, growth of the tumor, and population changes over time.  Most of the 

researchers in mathematical biology employ dynamical systems theory in their 

investigations. 
 

Mathematical ecology deals with the interactions of organisms and their 

environment.   

 

2.2 Models from Literature: 
 

1. Lotka-Volterra model developed independently by Lotka and Volterra [6] 

[7]. It describes the interactions among predator-prey populations with the 

following assumptions:   

(1) Sufficient food is available at all times to the prey population. 

(2) The predator population survives on the prey population. 

(3) The rate changes of both populations are based on their sizes. 

(4) There are no environmental changes during the prey-predator 

interactions. 

(5) The predators have limitless appetite. 
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The model obtained is 

ቐ

ௗ௫

ௗ௧
= 𝑟𝑥 − 𝑎𝑥𝑦

ௗ௬

ௗ௧
= 𝑏𝑥𝑦 − 𝑚𝑦

        Eqn. (2.1) 

The variables and parameters in the model are 𝑥 −prey density, 𝑦 −predator 

density, 𝑟 −intrinsic rate of increase of prey, 𝑎 −rate coefficient of predation, 

𝑏 − reproduction rate of predators per 1 prey consumed, and  𝑚 − rate of 

predator’s mortality. The system was studied by linearizing the model equations 

and by finding the equilibrium point’s local stability. 
 

The following are conclusions obtained from the study of solutions of the 

model: 
 

(1) The model was not accurate, as the competition among prey and 

predator populations was not addressed. 

(2) Both the populations grow infinitely due to limitless resources. 

(3) Predators’ consumption rate is unlimited. 

(4) Asymptotic stability was not found making the model behavior 

unnatural. 
 

Several modifications were made to this Lotka-Volterra model making the 

model more realistic. 
 

2. Nicholson and Bailey (1935) developed a model known as the Nicholson-

Bailey model. This model describes the coupled host-parasitoid system 

dynamics. This model uses difference equations while describing the growth 

dynamics of host-parasite populations and resembles the Lotka-Volterra 

model, which was modeled using differential equations [17].  

The following assumptions were made: 
 

(1) All infected hosts would produce a new generation of parasites. 

(2) All uninfected hosts will continue to have their own offspring. 
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(3) The encounters between hosts and parasites are random. 

(4) These encounters result in the infection of hosts. 

(5) Each host would be infected once by a parasite. 
 

The model equations are described in discrete time given by 

൜
𝐻௧ାଵ = 𝑘𝐻௧𝑒ି௣ೞ௉೟

𝑃௧ାଵ = 𝑐௔𝐻௧(1 − 𝑒ି௣ೞ௉೟)
  Eqn. (2.2) 

Here, 𝐻௧ −population size of hosts at time 𝑡, 𝑃௧ −population size of parasitoids 

at time 𝑡, 𝑘 −host reproductive rate, 𝑝௦ − the parasitoid searching efficiency, 

and 𝑐௔ − the average count of eggs laid on a single host body by a parasitoid.  
 

The system exhibits oscillations moving from an unstable equilibrium and it has 

one unstable fixed point  

(𝐻∗, 𝑃∗) = ቀ
௞ ௟௡(௞)

(௞ିଵ)௣ೞ௖ೌ
,

୪୬ (௞)

௣ೞ
ቁ              Eqn. (2.3) 

The model concludes that the system exhibits unstable oscillations until all the 

individuals of the population die. This simple model is non-spatial and the 

populations are considered as mixed-well. But, in realistic scenarios, this may 

not be true.  

By considering the species interactions and the dispersal of offspring as local, 

the following spatial Nicholson-Bailey model was proposed: 

ቊ
𝐻௜,௝(𝑡 + 1) = 𝑘𝐻௜,௝(𝑡) 𝑒ି௣ೞ௉೔,ೕ(௧)

𝑃௜,௝(𝑡 + 1) = 𝑐௔𝐻௜,௝(𝑡)(1 −  𝑒ି௣ೞ௉೔,ೕ(௧))
 Eqn. (2.4) 

At each grid point (𝑖, 𝑗), the dynamics are almost described by simple 

Nicholson-Bailey model but in addition, hosts and parasitoids will disperse 

immediately to neighboring sites.  

The indefinite coexistence of hosts and parasitoids is possible as per this spatial 

model whereas they eventually die in a non-spatial model.  
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3. Hassell and May studied the interactions among hosts and parasites based on 

the random search [18].   
 

, 

The generalized model considered was  

ቊ
𝑀௧ାଵ = 𝐹𝑀௧𝑓[𝑁௧ , 𝑀௧]

𝑁௧ାଵ = 𝑀௧ −
ெ೟శభ

ி

                              Eqn. (2.5) 

The model variables are 𝑀 −the host population density in 𝑡 and 𝑡 + 1 

generations, 𝑁 −the parasite population densities in 𝑡 and 𝑡 + 1 generations. 

𝐹 − rate increase in hosts.  
 

The authors developed a few models, which are briefed below: 
 

MODEL A: The authors developed a model by introducing the Nicholson-

Bailey host-parasite model in the form of control [17], [31]. Here the concept 

of random search is included.  Both host and parasite population densities have 

no impact on the searching efficiency. The assumptions were (i) each parasite 

searches in random (ii) The average area searched in lifetime effectively by a 

parasite constant. (iii) Enough eggs are available with the parasite for 

oviposition in all the hosts, which it encounters.   
 

MODEL B: This was constructed on the grounds of findings of Holling[32]. 

The searching efficiency is related to the host density.  As per the model the 

handling time, the time taken for resuming the search activity after encountering 

a host gradually decreases the available search time as more hosts are 

encountered.  
 

MODEL C: This model depends on the observation by Hassel that parasite 

searching efficiency depends on the density of searching parasites [33]. A little 

modification was made to the Nicholson Bailey model, which completely 

altered the outcome of the host-parasite model. The old model was always 
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unstable. The new model was found to be stable on an extensive range of 

conditions that depend on the host increasing rate and the amount of interface. 
 

All these models are random search models based on Poisson distribution. 

The authors pointed that even though random search is mathematically 

convenient, in realistic situation randomness if not a rule but an exception. They 

developed two more models based on non-random search. The authors found 

that the host and parasite density functional responses, and the response to the 

host distribution are the three basic parasite responses effecting the parasite 

searching behavior. 
 

For all these models, the significant parameters effecting the stability are 

discussed with needful illustrations. It was observed that the stability is 

influenced by factors like parasites mutual interference, aggregation of parasites 

in unit areas consisting high density of host population, and spatial or temporal 

asynchrony. 
 

The parameters affecting the levels of equilibrium of both the populations as 

well as those affecting the stability were investigated. From this study, the 

biological control characteristics were found to be a low handling time, high 

searching efficiency, and aggregation of parasites.  
 

4. Beddington and Hammond studied a mathematical model governing the 

interactions of a herbivorous host parasitized by a primary parasite which while 

developing itself subject to parasitism by the secondary parasite [23].  

The assumptions are: 
 

(1) The sequence of events in which hosts are parasitized by primaries, which 

then become available for attack by secondaries.  

(2) There is no overlap of generations in any of the species.  

(3) The transition from one time period to the next occurs after emerging of the 

secondary parasites. 
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The model equations are: 

 

ቐ

𝑀௧ାଵ = 𝑀௧𝐹ଵ(𝑀௧)𝐹ଶ(𝑁௧)

𝑁௧ାଵ = 𝑀௧[1 − 𝐹ଶ(𝑁௧)]𝐹ଷ(𝑆௧)

𝑆௧ାଵ = 𝑀௧[1 − 𝐹ଶ(𝑁௧)][1 − 𝐹ଷ(𝑆௧)]
  Eqn. (2.6) 

where 𝑁௧, 𝑃௧, and 𝑆௧ denote the densities of the host, primary parasite, and 

secondary parasite. The function 𝐹ଵ(𝑀௧) defines the host rate of increase as it 

depends on its own density. 𝐹ଶ(𝑁௧) defines the proportional host survival as a 

function of primary density and 𝐹ଷ(𝑆௧) defines as a function of secondary 

density, the proportion of primary parasites that survive the attack by 

secondaries. The authors studied the stability at equilibria.  
 

The authors derived the conditions for secondary parasite invasion of either a 

stable host-parasite system or an oscillatory one. They studied the global 

stability of the analysis. The important parameters of the interaction are 

identified and their effects on the feasibility and stability of the system are 

documented. The study revealed that certain combinations of the parameters 

permit both a host-primary and a host primary-secondary system to have a 

locally stable equilibrium. Two effects relevant to biological control are noted. 

It was established that when the host-primary system is stable, a secondary will 

always weaken effective control of the host and when the host-primary system 

displays oscillations introduction of a secondary may result in a stable three 

species equilibrium. A stable three species equilibrium will have a small range 

of parameter space compared to that of a two-species system.   
 

5. Ruan and Xiao studied a prey-predator system with a non-monotonic 

functional response [25]. For understanding the global dynamics of the system, 

the authors performed global qualitative and bifurcation analysis. They 
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discussed various bifurcation phenomena like saddle-node, supercritical and 

subcritical Hopf, and homoclinic bifurcations.    
 

The authors studied the prey-predator model wherein the group defense was 

exhibited by prey, developed by Freedman and Wolkowicz [34]. The model 

equations are given by 
 

ቊ
𝑥̇ = 𝑥𝑔(𝑥, 𝐾) − 𝑦𝑝(𝑥)

𝑦̇ = 𝑦൫−𝐷 + 𝑞(𝑥)൯
  Eqn. (2.7) 

 

Here the system variables and parameters are 𝑥 −prey density, 𝑦 −predator 

density, {𝐾, 𝐷} > 0 are the prey carrying capacity and predator death rate. In 

predator’s absence, the prey population growth rate is given by the function 

𝑔(𝑥, 𝐾). 𝑝(𝑥) denotes predator response function and 𝑞(𝑥) is the rate of 

conversion of prey to predator. 
 

On the model, the global qualitative analysis was conducted. The bifurcation 

parameters were taken as the prey carrying capacity and predator death rate. The 

study discovered new types of bifurcations and discussed global qualitative 

analysis for the particular case. 
 

6.  Kar considered a fishery predator-prey model. By incorporating a time delay 

in harvesting, the author studied the selective harvesting of fishes above a 

certain size and age [26]. This problem has a relevance that is more practical 

from a commercial point of view. The fisherman retains the bigger fish caught 

and throws back the smaller fish into the water bodies. This type of technique 

requires adjustments in the size of net mesh so that the smaller fish caught will 

swim back through the mesh gaps. The author studied generalized gauss type 

prey-predator models separately with prey and predator harvestings.  
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The first model (predator harvesting) considered after introducing the delay 

term is 

 

ቐ

ௗ௫

ௗ௧
= 𝑥[𝑔(𝑥) − 𝑦𝑝(𝑥)]

ௗ௬

ௗ௧
= 𝑦[−𝑑 + 𝛼𝑥𝑝(𝑥)] − 𝑞𝐸𝑦(𝑡 − 𝜏)

  Eqn. (2.8) 

 

 

 

 

 

 

 

Here 𝑔(𝑥) is the prey’s specific growth rate in the predator’s absence, 𝑝(𝑥), 𝛼, 

and 𝑑 are the response function, conversion factor, and the predator’s death rate 

in the prey’s absence respectively. 𝜏 ≥ 0 (delay) is the harvesting term, 𝑞 

catchability coefficient of predator species, 𝑞𝐸𝑦 is catch rate function and 𝐸 is 

effort function.  
 

The second model (prey harvesting) considered after introducing the delay term 

is 

ቐ

ௗ௫

ௗ௧
= 𝑥[𝑔(𝑥) − 𝑦𝑝(𝑥)] −  𝑞𝐸𝑥(𝑡 − 𝜏)

ௗ௬

ௗ௧
= 𝑦[−𝑑 + 𝛼𝑥𝑝(𝑥)] 

       Eqn. (2.9) 

 

The author performed the stability analysis of these models.  

The study revealed that any kind of instability was not induced by the delay of 

all dimensions. In certain situations, the delay is harmless. It was also observed 

that the instability oscillation through Hopf bifurcation gets induced by a delay 

of certain dimensions. In addition, stability may switch in some situations. 

These types of investigations with delay terms were not conducted before this 

work.  Simulations with chosen artificial data on the two models were 

performed to verify certain obtained mathematical results. 
 

7. Kar studied the prey-predator model with functional response considered as 

Holling type II [27]. The model incorporates a prey refuge with the main motto 

to conduct a rigorous mathematical investigation of the system model and to 
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provide qualitative results from the biological perspective.  The study analyses 

a Lotka-Volterra prey-predator model with functional response considered as 

Michaelis-Menten type. 
 

The assumptions are: 
 

(1) The population density of prey is resource-limited. 

(2) With the increase of the prey population, the functional response of each 

predator to the prey approaches a constant. 

(3) A certain percentage of prey is protected from predation by a spatial refuge. 
 

The model equations are 

ቐ

ௗ௫

ௗ௧
= 𝑟𝑥 ቀ1 −

௫

௄
ቁ −

ఉ௬௫

ଵା௔௫
ௗ௬

ௗ௧
= −𝛾𝑦 +

௖ఉ௬௫

ଵା௔௫

  Eqn. (2.10) 

The variables and parameters of the model are 𝑥 − population density of prey 

at time 𝑡, 𝑦 −population density of predators at time 𝑡, {𝑟, 𝐾, 𝛾, 𝛽, 𝑎, 𝑐} > 0,    

𝑟 − intrinsic rate of growth, 𝐾 −prey’s carrying capacity, 𝛾 − predator’s death 

rate, 
ఉ

௔
 is the maximum number of prey that can be eaten by each predator in 

unit time, and 𝑐 is the conversion factor denoting the number of newly born 

predators for each captured prey.  
 

The study concludes that incorporating a refuse makes the model more realistic. 

A refuse is considered significant for pest’s biological control. The prey 

densities will raise by an increase in the amount of refuse leading to an outbreak 

in the population. Conditions were derived for the existence of equilibria, their 

stability. The criteria for persistence were obtained. The results were verified 

by through numerical simulations.  
 

8. Xu et al investigated a predator-prey model with stage structure for predator 

[36]. It is considered that the predator population may be classified as matures 

and immature. The maturity age was presented by a delay in time. Predators 
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who are still immature cannot prey. At non-negative equilibria, sufficient 

conditions for stability are derived. 
 

The model equations of the study are 

ቐ

𝑥(𝑡)̇ = 𝑥(𝑡)(𝑟ଵ − 𝑎ଵଵ𝑥(𝑡) − 𝑎ଵଶ𝑦ଶ(𝑡)

𝑦ଵ(𝑡)̇ = 𝛼𝑥(𝑡)𝑦ଶ(𝑡) − 𝛾௖𝑦ଵ(𝑡) − 𝛼𝑒ିఊ೎ ௧𝑥(𝑡 − 𝜏)𝑦ଶ(𝑡 − 𝜏)

𝑦ଶ(𝑡)̇ = 𝛼𝑒ିఊ೎௧𝑥(𝑡 − 𝜏)𝑦ଶ(𝑡 − 𝜏) − 𝑟ଶ𝑦ଶ(𝑡) − 𝑎ଶଶ𝑦ଶ
ଶ(𝑡)

  Eqn. (2.11) 

The variables and parameters of the system are 𝑥(𝑡) −density of prey, 

𝑦ଵ(𝑡) −density of immature predator,  𝑦ଶ(𝑡) − density of mature predator,  

{𝑎ଵଵ, 𝑎ଵଶ, 𝑎ଶଶ,  𝑟ଵ, 𝑟ଶ, 𝛼 and 𝛾௖} > 0 and 𝜏 ≥ 0. 
 

The model assumptions are: 
 

(1) The prey species growth is of Lotka-Volterra nature, 𝑟ଵ, and 𝑎ଵଵ are the 

intrinsic growth and intra-specific competition rates respectively.  
 

(2) 𝑎ଵଶ is the maturing predator’s capturing rate, 
ఈ

௔భమ
 is the conversion rate of 

nutrients into reproduction of matured predators; 𝑎ଶଶ is the rate of death of the 

matured predators.  

(3) There is proportionality between the immature population’s death rate and 

the existing immature population. 𝛾௖ is the constant of proportionality.  

The authors studied the positivity and boundedness of solutions, global stability 

at non-negative equilibria, local asymptotic stability and proposed various 

mathematical results. The results were verified through numerical simulations.  
 

9.  Das et al studied the bio-economic harvesting of a predator-prey fishery [30]. 

The release of toxicants by both species affects one another. The bio-economic 

studies deal with effective exploitation management of renewable resources. 

 
  

The assumptions of the study are: 
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(1) The release of toxicants by sources such as industrial waste has an impact 

on the growth of individual species.  

(2) The intoxicants have different effects on both populations. 

(3) The predators alone influence prey reproduction. The amount of prey caught 

influences the predator reproduction. 

(4) When there are no predators, the prey density increases with a relative rate 

𝑟ଵ and in case of non-existence of prey, predator population exponentially falls 

with a relative rate 𝑟ଶ.  
 

The model equations are given by 

ቐ

ௗ௫భ

ௗ௧
= 𝑟𝑥ଵ ቀ1 −

௫భ

௅భ
ቁ − 𝛼𝑥ଵ𝑥ଶ

ௗ௫మ

ௗ௧
= −𝑑𝑥ଶ + 𝛽𝑥ଵ𝑥ଶ

  Eqn. (2.12) 

The variables and parameters of the model are 𝑥ଵ −size of prey, 𝑥ଶ −size of 

predators at time t,  𝑟 − maximum specific rate of growth of prey species, 𝑑 − 

relative rate of death of predators prey’s absence, and 𝐿ଵ − environmental 

carrying capacity of prey population. 
 

The steady state and their stability, global stability and bio-economic 

equilibrium were discussed.  
 

The optimal harvest policy was determined. The existence of limit cycles was 

discussed. The bio-economic equilibria were found to have occurred at the 

intersections of the lines of biological equilibrium and zero profit. Through 

optimal harvesting policy, it was established that revenue can be maximized by 

zero discounting and that the economic rent is completely degenerated by an 

infinite discount rate. 
 

10. Das et al studied the problem of nonselective harvesting with an appropriate 

catch-rate function [19]. Here, both the populations are assumed to be following 

the logistic growth law. The authors considered the functional response of 

predator to prey density such that individual predator’s functional response to 
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the density of prey moves towards a constant value with the increase of 

population of prey. 
 

The local stability of equilibria of the fishery system is discussed with necessary 

illustrations. The stability of the interior steady state is obtained and it was 

established that the system is bounded.   
 

The model considered after assuming the combined harvesting effort 𝐸 is 

ቐ

ௗ௫భ

ௗ௧
= 𝑟ଵ𝑥ଵ ቀ1 −

௫భ

௅భ
ቁ −

௠௫భ௫మ

௔ା௫భ
−

௖భா௫భ

௟భாା௟మ௫భ

ௗ௫మ

ௗ௧
= 𝑟ଶ𝑥ଶ ቀ1 −

௫మ

௅మ
ቁ −

௠ఉ௫భ௫మ

௔ା௫భ
−

௖మா௫మ

௟యாା௟ర௫మ

  Eqn. (2.13) 

The variables and parameters of the system are 𝑥ଵ −size of prey 

population,𝑥ଶ −size of predator population, 𝐿ଵ −environmental carrying 

capacity of prey, 𝐿ଶ − environmental carrying capacity predators, 𝛽 − 

conversion factor, 𝑚 − maximum relative increase of predation, 𝑟ଵ −intrinsic 

growth rate of prey, 𝑟ଶ − intrinsic growth rate of predator; 𝐸(𝑡) −effort 

function; {𝑐ଵ, 𝑐ଶ} are the coefficients of catchability of both the populations.  
 

The equilibrium points are found. Boundedness, local stability, and global 

stability were studied. The bio-economic equilibrium and optimal harvesting 

policy were studied. It was established that revenue can be maximized by zero 

discounting. Also, observed that with an infinite discount rate, the economic 

rent has totally degenerated. 
 

 
, 

11. Kar and Chakraborthy considered the predator-prey type fishery model [29]. 

For the prey population, a partial closure is considered. The dynamics of the 

system are studied by obtaining steady states. By formulating a policy for 

optimal harvesting, the solutions are obtained by Pontryagin’s maximal 

principle. Numerical examples were illustrated to support the obtained results. 
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The assumptions of the model discussed are: 

(1) The prey is harvested continuously. 

(2) Due to the non-harvesting of predators, the harvesting has no impact on 

the predator. 

(3) Both the populations fight for a common resource. 

(4) The growth of prey is logistic. 
 

The model equations are given by 

ቐ

ௗ௫భ

ௗ௧
= 𝑟𝑥ଵ ቀ1 −

௫భ

௞
ቁ −

ఈ௫భ௬భ

 ெ೎ା௫భ
− ℎ(𝑡)

ௗ௬భ

ௗ௧
= −𝑑𝑦ଵ +

ఉఈ௫భ௬భ

 ெ೎ା௫భ
− 𝛾𝑦ଵ

ଶ
  Eqn. (2.14) 

The variables and parameters of the system are 𝑥ଵ − size of prey 

population, 𝑦ଵ − size of predator population, 𝑟 −prey’s growth rate, 

𝐾 −carrying capacity; 𝛼 − conversion factor denoting maximal relative 

increase of predation,  𝑀௖ − Michaelis-Menton constant, ℎ(𝑡) − harvesting at 

the time 𝑡, 𝑑 − predator’s death rate and 𝛽 − conversion factor.  
 

The uniform boundedness of the system is studied and theorems were 

established. Existence, as well as stability of interior equilibrium points, are 

studied. Bifurcation analysis was carried out and various numerical examples 

were illustrated by considering hypothetical data. 
 

12. Rebaza studied the system with prey refuge and continuous threshold prey 

harvesting [38]. The study focused on how the refuge and harvesting have their 

impact on the ecosystem. The stability of equilibria and periodic solutions were 

discussed. Both hypothetical and computational techniques were used in 

investigations. In addition, bifurcations of various natures were studied.  
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The assumptions in this study are as follows: 
 

(1) The basic interactions of prey and predator are governed by Michaelis-

Menten functional response. 

(2) The external agent is used to harvest prey. 

(3) Prey refuge is included in the system to counterbalance predation. 

The model equations are given by 

ቐ
𝑥ଵ̇ = 𝑥ଵ(1 − 𝑥ଵ) −

௔೛(ଵି௠)௫భ௬భ

ଵା௖(ଵି௠)௫భ
− 𝐻(𝑥)

𝑦̇ଵ = 𝑦ଵ(−𝑑 +
௕೛(ଵି௠)௫భ

ଵା௖(ଵି௠)௫భ
)

  Eqn. (2.15) 

The variables and parameters of the system are 𝑥ଵ −size of prey population, 

𝑦ଵ − size of predator populations, the constants {𝑎, 𝑏, 𝑐, 𝑑, ℎ, 𝑚, 𝑇} > 0 ,                  

𝑎௣ − rate of capture of the prey, 𝑏௣ − rate of conversion of prey , 𝑑 − natural 

rate of death of the predator, 𝐻(𝑥) − harvesting function with continuous 

threshold policy on the prey. 
 

The authors studied the boundedness of solutions, equilibria and stability 

properties, bio-economic equilibrium, and bifurcations. 
 

The study concludes that compared to constant or linear harvesting, continuous 

threshold harvesting on the prey is a better policy. The effects of harvesting and 

refuge on the system are discussed. The obtained periodic solutions are found 

to be unstable.  
 

13. Qureshi et al conducted the qualitative study of the Nicholson-Bailey host-

parasite model and discussed the unique positive equilibrium point’s local 

asymptotic stability [41].  
 

The model assumptions are: 

(1) encounters between hosts and parasites are random. 

(2) per parasite search area and the root of the parasitoid density are in inverse 

proportion to each other. 
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(3) A host can escape the parasitism with a probability approximated by 𝑒ି௔ඥ௬೙. 
 

The discrete model equations are given by 

ቊ
𝑥௡ାଵ = 𝑅𝑥௡𝑒ି௔ඥ௬೙

𝑦௡ାଵ = 𝑥௡(1 − 𝑒ି௔ඥ௬೙
  Eqn. (2.16) 

where 𝑥௡, 𝑦௡ represents the 𝑛௧௛ year population densities of hosts and parasites; 

R is the offspring count of a host (not parasitized) surviving to the next year. 
  

The local asymptotic stability is observed for the unique positive equilibrium 

point of the system using the linearization method. Numerical examples were 

provided in support of the established theorems.  
 

14. Gao and Jin studied a more realistic three-stage-structure prey-predator 

model [42]. Introducing a time delay, the authors investigated a system with 

“three-stage-structure” for predator. The functional response was Beddington-

DeAngelis form. The model is   

⎩
⎪
⎪
⎪
⎨

⎪
⎪
⎪
⎧

𝑑𝑋ଵ

𝑑𝑡
=

𝑑(𝑡)𝑥(𝑡 − 𝜏ଶ(𝑡))𝑋ଶ(𝑡 − 𝜏ଶ(𝑡))

𝛼(𝑡) + 𝛽(𝑡)𝑥൫𝑡 − 𝜏ଶ(𝑡)൯ + 𝛾(𝑡)𝑋ଶ(𝑡 − 𝜏ଶ(𝑡))
− (𝑑ଵ(𝑡) + 𝑟௜௠(𝑡))𝑋ଵ(𝑡)

𝑑𝑋ଶ

𝑑𝑡
= 𝑟௜௠(𝑡)𝑋ଵ(𝑡) − 𝑑ଶ(𝑡)𝑋ଶ(𝑡) − 𝑟௠௢(𝑡)𝑋ଶ(𝑡) − 𝑒ଶ(𝑡)𝑋ଶ

ଶ(𝑡)

𝑑𝑋ଷ

𝑑𝑡
= 𝑟௠௢(𝑡)𝑋ଶ(𝑡) − 𝑑ଷ(𝑡)𝑋ଷ(𝑡)

𝑑𝑥
𝑑𝑡

= 𝑥(𝑡) ൬𝑏(𝑡) − 𝑎(𝑡)𝑋ଵ(𝑡 − 𝜏ଵ(𝑡) −
𝑐(𝑡)𝑋ଶ(𝑡)

𝛼(𝑡) + 𝛽(𝑡)𝑥(𝑡) + 𝛾(𝑡)𝑋ଷ(𝑡)
)൰

 

 

Eqn. (2.17) 

with initial conditions  

𝑋௜(𝜃) = 𝜑௜(𝜃), 𝑖 = 1,2,3, … ; 𝑦(𝜃) = 𝜑ସ(𝜃) > 0 𝑓𝑜𝑟 𝜃 ∈ [−𝜏, 0], and  

𝑋௜(0) > 0, 𝑖 = 1,2,3 … , 𝑦(0) > 0. 
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The variables and parameters in the model are 𝑋ଵ −density of the immature 

predator at time 𝑡, 𝑋ଶ − density of mature predator at time 𝑡, 𝑋ଷ − density of 

old age predator at time 𝑡, 𝑥(𝑡) − prey density at time 𝑡, 𝜏 − delay due to prey 

densities, 𝜏ଶ(𝑡) − predator gestation-delay at time 𝑡, 𝑑ଵ −death rate of 

immature predator; 𝑑ଶ − death rate of matured predator and 𝑑ଷ −death rate of 

old age predator. 𝑟௜௠ − the rate of transformation from immature to mature 

predators and 𝑟௠௢ − the rate of transformation mature to old age predators 

respectively.  
 

Positive periodic solutions are examined. The authors established that the delay 

term has no negative impact on the positive periodic solution. 
 

15. Zhang and Zhang investigated a bio-economic model with stochastic 

fluctuations [43],. A transition from stable to unstable and back again to stable 

was observed in internal equilibrium with the increase in time delay. Hopf 

bifurcations were determined.  
 

The authors considered a time delay “Leslie-Gower prey-predator” system and 

introduced discrete delay and the transformed system is given by 
 

ቐ
𝑥(𝑡)̇ = 𝑟ଵ𝑥(𝑡) − ቀ1 −

௫(௧ିఛ)

௄
ቁ − 𝛽𝑥(𝑡)𝑦(𝑡)

𝑦(𝑡)̇ = 𝑟ଶ𝑦(𝑡) − ቀ1 −
௬(௧)

ఊ௫(௧)
ቁ 

  Eqn. (2.18) 

 

The notations in the model are 𝑥 − density of prey population, 𝑦 − density of 

predator population, 𝑟ଵ, 𝑟ଶ − intrinsic growth rates of prey and predators,                   

𝐾 − carrying capacity of prey, 𝛾𝑥(𝑡) − prey-dependent carrying capacity of the 

predator and 𝛽𝑥(𝑡) −predator functional response to prey. 
 

The authors discussed the stability of equilibria and Hopf bifurcations. A time 

delay model in the fluctuating environment was proposed and numerical 

simulations were presented.  
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16. Khan and Qureshi conducted the qualitative analysis on the modified 

Nicholson-Bailey host-parasite model [44]. 
 

The model assumes that  

(1) When the parasitoids are absent, the host exhibits bounded dynamics. 

(2) 𝑒ି௔௬೙ is the probability for the host to escape parasitism, a is the constant 

of proportionality constant and 𝑦௡ is the density of parasitoid population. 

(3) The probability for the host to become infected is 1 − 𝑒ି௔௬೙. 
 

 

The Nicholson-Bailey modified model is given by 
 

൝
𝑥௡ାଵ =

௕௫೙௘షೌ೤೙

ଵାௗ௫೙

𝑦௡ାଵ = 𝑐𝑥௡(1 − 𝑒ି௔௬೙)
  Eqn. (2.19) 

 

where 𝑎, 𝑏, 𝑐, 𝑑, and the initial values 𝑥଴, 𝑦଴ ∈ ℝା, 𝑥௡ − density of prey 

population, 𝑦௡ − density of predator population, 𝑎 − each parasitoid attacks the 

hosts found in ‘a’ units of area, and 𝑏 − number of offsprings of an un-

parasitized host surviving to the next year.     
 

The authors studied the boundedness, existence and uniqueness of positive 

equilibrium. Its locally asymptotic and global stabilities were also investigated. 

For positive solutions, the rate of convergence was obtained. 

17. Chaudhuri and Hassan studied the coupled-prey predator dynamics with 

mature-immature stage structure [21]. The results were compared with those of 

the existing model of Xin-an Zhang et al [24]. The model is realistic with 

parameters assumed as positive [24]. The authors studied the model with 

complex parameters. 
 

The discrete model equations studied are 

ቐ

𝑥௧ାଵ = 𝑥௧ + (𝑎𝑦௧ − 𝑏𝑥௧ − 𝑐𝑥௧
ଶ − 𝑑𝑥௧𝑧௧)𝑑𝑡

𝑦௧ାଵ = 𝑦௧ + (𝑥௧ − 𝑦௧)𝑑𝑡

𝑧௧ାଵ = 𝑧௧ + ൫𝑧௧(−𝑒 + 𝑥௧ − 𝑧௧)൯𝑑𝑡

  Eqn. (2.20) 



25 
 

where 𝑎, 𝑏, 𝑐, 𝑑, 𝑒 are complex numbers and 𝑑𝑡 = 0.0005 is the delay term. 

Here 𝑥(𝑡) −population size of immature prey at time 𝑡, 𝑦(𝑡) −population size 

of mature prey at time 𝑡, 𝑧(𝑡) −population size of predator at time 𝑡. 

The authors investigated the system using complex parameters and observed the 

dynamics as more complex compared to the classical realistic model.  
 

The authors modified the model to observe the permanence of both the 

populations and studied the stability.  
 

The discrete model equations for the modified model are 

ቐ

𝑥௧ାଵ = 𝑥௧ + (𝑎𝑥௧ − 𝑏𝑦௧ − 𝑐𝑥௧
ଶ − 𝑑𝑥௧𝑧௧)𝑑𝑡

𝑦௧ାଵ = 𝑦௧ + (𝑦௧(𝑥௧ − 𝑦௧))𝑑𝑡

𝑧௧ାଵ = 𝑧௧ + ൫𝑧௧(−𝑒 + 𝑥௧ − 𝑧௧)൯𝑑𝑡

 Eqn. (2.21) 

where 𝑎, 𝑏, 𝑐, 𝑑 𝑎𝑛𝑑 𝑒 are complex and 𝑑𝑡 is the delay term in discretizing the 

system. 
 

The modified system has two additional fixed points including all the points 

from the previous model. One kind is that only immature population will be 

permanent and the other kind would be only immature prey and predator will 

be permanent.   
 

18. Atabaigi and Akrami considered a two-parameter family of discrete models, 

consisting of coupled nonlinear difference equations describing a host-parasite 

interaction [45]. The stability and bifurcation analysis was done on the model 

whose equations are given by 
 

൜
𝐻௡ାଵ = 𝑟𝐻௡(1 − 𝐻௡) 𝑒ି௣ೞ௉೙

𝑃௧ାଵ = 𝐻௡(1 − 𝑒ି௣ೞ௡)
  Eqn. (2.22) 
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The variables and parameters of the system are 𝐻௡ − 𝑛th generation host 

population, 𝑃௡ − 𝑛th generation predator population, 𝑟 − host’s intrinsic growth 

rate, 𝑝௦ − parasite’s searching efficiency. 
 

If the parasites vanish in the system, then it becomes the discrete logistic type 

model.  
 

The model assumptions are 

(1) In the parasite’s absence, the host equation becomes a logistic model. 

(2) The host’s presence alone makes the parasites grow and the effect of 

parasites is the reduction of the size of the host population. 

(3) The interaction is through the independent and random search by the parasite 

with constant and searching efficiency.  
 

The authors studied the local dynamics of the model. The fixed points obtained 

are (0,0) 𝑎𝑛𝑑 ቀ
௥ିଵ

௥
, 0ቁ. if 𝑟 ∈ (0,1), the origin is asymptotically stable, and if 

𝑟 > 1, it is unstable.  For 𝑟 ∈ (1,3) and 𝑝௦ <
௥

௥ାଵ
, the point ቀ

௥ିଵ

௥
, 0ቁ is 

asymptotically stable and when 𝑟 > 3 or  𝑝௦ >
௥

௥ାଵ
, it is unstable. 

 

The authors also investigated the presence of an unstable non-hyperbolic fixed 

point (0,0) if 𝑟 = 1. 
 

The authors derived the sufficient conditions for Neimark-Sacker bifurcation.  
 

The study of stability and bifurcation agrees with the biological facts. It was 

established that the parasite cannot grow in the host’s absence and the 

interaction between host and parasite is given by a Poisson distribution’s zero 

term The numerical simulations carried outmatched the theoretical results. 
 

19. Hassan studied the three species model of Previte and Hoffman developed 

in 2013 [20], [29]. The author studied the behavior of the three species model 
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by slightly introducing immigration into the three populations[22]. The 

dynamics of the system with and without immigration were compared.  
 

The model of Previte and Hoffman is given by 

ቐ

𝑥̇ = 𝑥(1 − 𝑦 − 𝑧 − 𝑏𝑥)

𝑦̇ = 𝑦(−𝑐 + 𝑥)

𝑧̇ = 𝑧(−𝑒 + 𝑓𝑥 + 𝑔𝑦 − 𝛽𝑧)
             Eqn. (2.23) 

The variables and parameters of the system are 𝑥 −prey density, 𝑦 −predator 

density, 𝑧 −omnivore density. All the other parameters are considered positive. 
 

The author added immigration factors 𝑝(𝑥), 𝑞(𝑦)𝑎𝑛𝑑 𝑟(𝑧) into prey, predator, 

and omnivore populations respectively and the following new model equations 

were developed. 
 

ቐ

𝑥̇ = 𝑥(1 − 𝑦 − 𝑧 − 𝑏𝑥) + 𝑝(𝑥)

𝑦̇ = 𝑦(−𝑐 + 𝑥) + 𝑞(𝑦)

𝑧̇ = 𝑧(−𝑒 + 𝑓𝑥 + 𝑔𝑦 − 𝛽𝑧) + 𝑟(𝑧)

  Eqn. (2.24) 

 

 

The qualitative study of the dynamics of the system is conducted and it was 

observed that the dynamics remained unchanged. This shows that the system is 

robust even after adding factors of immigration. 
 

20. Bischi et al proposed a model related to fisheries [46]. Here harvesting 

process is conducted by fishermen who can harvest any one of the two species 

at a time. Based on individual agents’ strategy, at each period of time, the 

fishermen are classified as two classes. Following an evolutionary mechanism, 

the agents switch between strategies to maximize respective profits. This study 

compares the economic consequences of self-regulating fishery and other 

regulatory policies.  
 

The bio-economic model considered by the authors is given by 

ቊ
𝑇ଵ̇ = 𝑇ଵ𝐺ଵ(𝑇ଵ, 𝑇ଶ) − 𝐻ଵ(𝑇ଵ, 𝑇ଶ)

𝑇ଶ̇ = 𝑇ଶ𝐺ଶ(𝑇ଵ, 𝑇ଶ) − 𝐻ଶ(𝑇ଵ, 𝑇ଶ)
  Eqn. (2.25) 
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where 𝑇ప,̇  𝑖 = 1,2, represents the biomass time derivatives, 𝐺௜ is the growth 

functions, and 𝐻௜ represents the species instantaneous harvesting. 
 

For growth functions, the authors used the Rosenzweig-MacArthur prey-

predator model. The Holling type-II functional response was considered. 
 

The authors studied dynamic fishery with unrestricted and restricted harvesting 

and discussed bifurcations; proposed various analytical results. The study 

observes that there is a reasonable tradeoff between conservation of resources 

and maximization of profits with myopic, evolutionary self-regulation.  
 

21. Yang and Li studied the diffusive prey-predator system with modified 

Leslie-Gower and Holling-type III schemes [48]. The stability of equilibrium is 

studied. For unique positive equilibrium, using the Lyapunov function, the 

global asymptotical stability conditions were obtained.    
 

The system equations are given by 

ቐ

ௗ௫

ௗ௧
= 𝑥 ቀ𝑎ଵ − 𝑏𝑥 −

௖భ௫௬

௫మା௞భ
ቁ

ௗ௬

ௗ௧
= 𝑦 ቀ𝑎ଶ −

௖మ௬

௫ା௞మ
ቁ

  Eqn. (2.26) 

 

The variables and parameters of the system are 𝑥 −prey density, 𝑦 −predator 

density, {𝑎ଵ, 𝑎ଶ, 𝑏, 𝑐ଵ, 𝑐ଶ, 𝑘ଵ, 𝑘ଶ} > 0;  𝑎ଵ − prey growth rate,  𝑎ଶ −predator 

growth rate, 𝑏 − individual species strength of competition among 𝑥, 𝑐ଵ − 

maximum per capita reduction rate of 𝑥 due to 𝑦,  𝑘ଵ −extent of environmental 

protection of prey,  𝑘ଶ − extent of environmental protection of predators.  
 

The stability and permanence are studied. Various mathematical results are 

derived. 
 

Several authors also successfully applied prey-predator modeling for the study 

of various problems related to multiple species modeling in harvesting, 

competition among two species with the third species as predator, periodicity of 
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dynamical systems on time scales, discrete semi-ratio-dependent models with a 

functional response of the periodic solutions, dynamic behavior of stratum of 

plant-herbivore, bio-economic models in fisheries, three-dimensional prey-

predator systems with prey disease, a diffusive predator-prey model with an 

epidemic in the prey species [20][24] [28][35] [37] [40] [46] [49] [50] [51] [52] 

[53].    
 

2.3 Dynamical System 
 

A system is all the activities united by some form of regular interactions. A 

dynamical system is a system that evolves over time [5], [58], [59]. It has a state 

for every point in time, which is subjected to a rule called the rule of evolution. 

The rule of evolution determines the next state of the system based on the 

preceding states.   The dynamics of the system describes whether the system is 

going to settle down to an equilibrium state; becomes fixed into oscillating 

cycles or fluctuates chaotically. In certain cases, bifurcation occurs where small 

perturbations bring state changes in the system.    
 

In discrete-time scenario, the state of the system evolves in integer time          

steps = 0,1,2, … . Such system is referred as a discrete dynamical system.  In 

a continuous dynamical system case, the system state evolves through 

continuous time. The state 𝑥(𝑡) can be thought of as a point moving smoothly 

in state space. The evolution rule decides the movement of 𝑥(𝑡) by giving its 

velocity.  Here, starting with the initial state 𝑥(0), the trajectory 𝑥(𝑡) is a curve 

through the state space. Continuous and discrete dynamical systems are 

modeled by differential and difference equations respectively.  
 

2.4 Qualitative Study of Dynamical Systems 
 

Dynamical systems are usually modeled as differential equations and there are 

relatively few equations possessing explicit solutions. So, most of the 

researchers use qualitative methods to study the behavior of these systems.  
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H. Poincaré and A.M. Lyapunov developed the basic qualitative theory of 

differential equations. Poincaré studied the solutions of systems of differential 

equations in an appropriate space by using geometric methods. The results so 

obtained helped him to develop a general theory on solution behavior. He 

studied numerous fundamental problems on the effect of parameters on the 

system’s behavior.   
 

Lyapunov founded the modern theory of stability of motion. His main concern 

was to study the dynamics of the solutions around equilibria.  

2.5 Discrete Linear Models 
 

The time discrete models are observed only at discrete times 𝑡௜,                               

for 𝑖 = 0,1,2,3 … [60], [61]. A generalized two dimensional discrete linear 

model is represented as  

𝑥௡ାଵ = 𝑎ଵଵ𝑥௡ + 𝑎ଵଶ𝑦௡ 

𝑦௡ାଵ = 𝑎ଶଵ𝑥௡ + 𝑎ଶଶ𝑦௡ 

Eqn. (2.27) 

 
 

Eqn (2.27) can be written as 

            ቀ
𝑥
𝑦ቁ

௡ାଵ
= ቀ

𝑎ଵଵ 𝑎ଵଶ

𝑎ଶଵ 𝑎ଶଶ
ቁ ቀ

𝑥
𝑦ቁ

௡
             Eqn. (2.28) 

 

The stationary state for a 𝑥௡ାଵ = ∅(𝑥௡) is a 𝑥̅, ∋ 𝑥̅ = ∅(𝑥̅). Therefore, 

(𝑥̅, 𝑦ത) = (0,0) is always a stationary state.  

 
 

Consider the system  

𝑋௡ାଵ = 𝐴𝑋௡          Eqn. (2.29) 

If 𝑋଴ is the initial condition. The solution of Eqn. (2.29) is 



31 
 

𝑋௡ = 𝐴௡𝑋଴, 𝑛 = 0,1,2, … . 

We have 𝐴௡𝑋 = 𝜆௡𝑋 and 𝑋௡ = 𝜆௡𝑋଴ satisfies the given system Eqn. (2.29), 

where 𝜆 is an eigenvalue and 𝑋 is its corresponding eigenvector.  

For matrix A, the spectral radius is 𝜌(𝐴) = max (|𝜆|: 𝜆 𝑖𝑠 𝑒𝑖𝑔𝑒𝑛𝑣𝑎𝑙𝑢𝑒 𝑜𝑓 𝐴) 

For real eigenvalues, we have the following cases. 

Case 𝟏𝒂: 0 < 𝜆ଵ < 𝜆ଶ < 1 ⟹ (0,0) 𝑖𝑠 𝑎 𝑠𝑡𝑎𝑏𝑙𝑒 node. 

Case 𝟏𝒃: 0 < 𝜆ଵ = 𝜆ଶ < 1 ⟹ (0,0) 𝑖𝑠 𝑎 𝑠𝑡𝑎𝑏𝑙𝑒 one tangent node. 

Case 2: 1 < 𝜆ଵ < 𝜆ଶ  ⟹ (0,0) 𝑖𝑠 𝑎𝑛 𝑢𝑛𝑠𝑡𝑎𝑏𝑙𝑒 node.  

Case 3: −1 < 𝜆ଵ < 0< 𝜆ଶ < 1 ⟹ (0,0) 𝑖𝑠 𝑎 𝑠𝑡𝑎𝑏𝑙𝑒 node with reflection. 

Case 4: 𝜆ଵ < −1 < 1 < 𝜆ଶ ⟹ (0,0) 𝑖𝑠 𝑎𝑛 𝑢𝑛𝑠𝑡𝑎𝑏𝑙𝑒 node with reflection.  

Case 5: 0 < 𝜆ଵ < 1 < 𝜆ଶ  ⟹ (0,0) 𝑖𝑠 𝑎 𝑠𝑎𝑑𝑑𝑙𝑒 𝑝𝑜𝑖𝑛𝑡.  

Case 6: −1 < 𝜆ଵ < 0< 1 < 𝜆ଶ  ⟹ (0,0) 𝑖𝑠 𝑎 𝑠𝑎𝑑𝑑𝑙𝑒 𝑝𝑜𝑖𝑛𝑡 with reflection. 

For complex eigenvalues, the following cases will arise: 

Case 7: 𝛼ଶ + 𝛽ଶ = 1 ⟹ (0,0) 𝑖𝑠 𝑎 center. 

Case 8: 𝛼ଶ + 𝛽ଶ > 1 ⟹ (0,0) 𝑖𝑠 𝑎n unstable spiral. 

Case 9: 𝛼ଶ + 𝛽ଶ < 1 ⟹ (0,0) 𝑖𝑠 𝑎 𝑠𝑡𝑎𝑏𝑙𝑒 𝑠𝑝𝑖𝑟𝑎𝑙 

A detailed discussion on the solutions along with their pictorial representations 

and certain standard theorems can be obtained in [61]. 
 

2.6 Nonlinear Discrete Models 
 

The general form of one dimensional nonlinear difference equation of first order 

is  

𝑋௡ାଵ = 𝑓(𝑋௡)     Eqn (2.30) 

 

Definitions 

(a) For the system Eqn. (2.30), if 𝑥̅ = 𝑓(𝑥̅), then  𝑥̅ is called as a stationary 

point. 

(b) The stationary point 𝑥̅ of Eqn (2.30) is locally asymptotically stable ∃ a 

nbd 𝑈 of 𝑥̅ ∋ for each starting value 𝑥଴ ∈ 𝑈, we get 𝑙𝑖𝑚௡→ஶ𝑥௡ = 𝑥̅. 
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(c) 𝑥̅ is unstable , if it is not locally asymptotically stable. 
 

Let 𝑓 be differentiable. A stationary point 𝑥̅ of 𝑋௡ାଵ = 𝑓(𝑋௡) is locally 

asymptotically stable if |𝑓ᇱ(𝑥̅)| < 1. if |𝑓ᇱ(𝑥̅)| > 1, it is unstable. These are 

sufficient conditions but not necessary. 
 

For the following discrete dynamical system, the stability of the system can be 

obtained by Jacobian matrix at stationary point (𝑥̅, 𝑦ത). 
 

൜
𝑋௡ାଵ = 𝑓(𝑋௡, 𝑌௡)

𝑌௡ାଵ = 𝑔(𝑋௡, 𝑌௡)
                                           Eqn. (2.31) 

where the stationary states 𝑥̅ and 𝑦ത satisfy  

𝑥̅ = 𝑓(𝑥̅, 𝑦ത) 

𝑦ത = 𝑔(𝑥̅, 𝑦) 

Let (𝑥̅, 𝑦ത) be a stationary state of the system Eqn. (2.31) 

Let 𝐴 = ቀ
𝑎ଵଵ 𝑎ଵଶ

𝑎ଶଵ 𝑎ଶଶ
ቁ be the Jacobian at the point (𝑥̅, 𝑦ത) with eigenvalues 𝜆ଵ, 𝜆ଶ. 

(𝑥̅, 𝑦ത) is locally stable if ห𝜆ଵ,ଶห < 1 and unstable if ห𝜆௝ห > 1 for one 𝑗 ∈ {1,2}.  
 

2.7 Routh-Hurwitz theorem 
 

The signature of the real part of the eigenvalues decides the stability of 

equilibrium point. To find the solution’s stability, it is enough to check whether 

the signs of real part of eigenvalues are negative or not. The method to check 

whether all the polynomial roots have their real parts as negative is discovered 

by Edward John Routh and Adolf Hurwitz independently formulated as Routh-

Hurwitz theorem, which states that real parts of all the roots of the polynomial  

𝜆௡ + 𝑎ଵ𝜆௡ିଵ + 𝑎ଶ𝜆௡ିଶ + ⋯ + 𝑎௡ = 0    Eqn. (2.32) 

are negative if every coefficient 𝑎௜ is positive and if every upper-left 

determinant  Δ௜(𝑖 = 1,2, … 𝑛) of the Hurwitz matrix H is also positive. 
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2.8 Bifurcation Analysis 
 

If the dynamical system exhibits sudden qualitative changes in its behavior for 

small changes made in the parameter values, bifurcation occurs [62]. Both 

continuous and discrete systems can exhibit bifurcations. The concept of 

bifurcation was introduced by Henri Poincare.  Bifurcation analysis speaks 

about structural stability. In a dynamical system, if small perturbations in 

parameters have no impact on the flow quality in the phase space, the system is 

structurally stable otherwise not.  

2.8.1 Types of Bifurcation 
 

The following are the classifications in bifurcation [62]. 

(a) Local bifurcation: Whenever the stability of the fixed point changes due 

to a change in parameter values, a local bifurcation occurs. At the 

bifurcation point, the equilibrium is non-hyperbolic. As parameters 

cross critical thresholds, this bifurcation can be studied from the 

variations in local stability of equilibria, periodic orbits.  
 

(b)  Global bifurcation: This occur when there is a collision between large 

invariant sets with equilibria. Here the changes in phase space are not 

limited to a small neighborhood. These cannot be studied completely 

with the help of stability analysis at fixed points. 
  

2.8.2 Examples of Local Bifurcations 
 

(a) Saddle Node Bifurcation: This is also called as fold bifurcation. It is related 

to a continuous dynamical system. The fixed points annihilate each other by 

colliding with one another.   
 

(b) Transcritical Bifurcation: Here for all parameter values, the fixed point 

never ceases to exist. However, whenever a parameter value is changed, the 

fixed point’s stability gets interchanged with another fixed point. When collided 

with one another, the stable fixed points become unstable and vice versa. 
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(c)Pitchfork Bifurcation: It is a form of local bifurcation. Here the transition 

from one fixed point to 3 fixed points takes place. Usually, this occurs in 

systems with reflection symmetry. This is further divided into supercritical and 

subcritical bifurcation. 

(d) Hopf Bifurcation: In this type of bifurcation, when the equilibrium changes 

its stability through a pair of eigenvalues that are purely imaginary, a limit cycle 

arises from the equilibrium. This generally occurs in a two-dimensional system. 

This is again classified as supercritical and subcritical. Supercritical bifurcation 

occurs when the first Lyapunov coefficient obtained from Hopf bifurcation's 

normal form is negative. In the other case, the Hopf bifurcation is subcritical. 

An Orbitally stable and unstable limit cycle is obtained in supercritical and 

subcritical cases respectively. 

2.8.3 Types of Global Bifurcation 
 

The following are the types of global bifurcation [63][64]. 

(a)  Homoclinic bifurcation: This occurs when there is a collision between 

saddle point and a periodic orbit. The period of the periodic orbit will grow to 

infinity at the point of bifurcation and becomes a homoclinic orbit. The periodic 

orbit ceases to exist after bifurcation.   

(b) Heteroclinic bifurcation: This occurs when a steady point’s unstable 

manifold becomes another steady point’s stable manifold. The system is said to 

be having a heteroclinic connection where the two steady points are actually 

connected.  When this steady point connection is broken, the heteroclinic 

bifurcation is said to occur.  

(c)Infinite-period bifurcation: On a limit cycle, if two fixed points appear, 

then this bifurcation occurs. The period tends to infinity as the parameters limit 

approaches to a certain critical value. This bifurcation occurs at critical value.  
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2.9 Chaos 
 

Chaos is a mathematical theory focused on dynamical systems which are highly 

sensitive to the initial conditions [65], [66]. This phenomenon was introduced 

by Edward Lorenz [67]. 

(1) It deals with non-linear, hard-to-control phenomena in our world.  

(2) It helps to understand complicated behavior or natural occurrences while 

studying large and complex systems (systems with many components 

which make them difficult to understand) 

The Climatic system, the pattern of bird’s migration, behavior of boiling water, 

etc. are examples of complex systems.  
 

2.9.1 Principles of Chaos theory 
 

The butterfly effect: This speaks about the general idea that smaller causes 

may have larger effects. As per this effect, a tornado on the Japanese coast can 

occur due to the flapping of wings by a small butterfly in Mexico. 

Mathematically, there is a greater significance to initial conditions as they have 

a major potential to affect the outcomes. Small things at the beginning may lead 

to something major in the end. 

Unpredictability: In the highly complex dynamical situations we are living in, 

nothing can be predicted easily. Anything can happen at any moment. We 

cannot predict things accurately. A small error can change the outcome. So 

unpredictability is a common principle in chaos.  

Generators, attractors, and repellers: 

The characteristics of the system, which have the potential to produce chaotic 

behavior, are called generators. In a long run, huge differences in the system 

can be caused by a very small difference in generators [68]. 

Sometimes, chaotic behavior inclines to some predictable behavior. In such 

situations, elements of the system bring chaotic aspects into a more simple and 

comprehensible pattern. These elements are attractors [66].  
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For a variety of initial conditions, a numerical set of values towards which the 

system tends to evolve is called as an attractor. Even if disturbed slightly, the 

system values remain close to the attractor. Otherwise, the set of numerical 

values is called a Repeller.  
, 

In biological studies, the behavior of animals is chaotic. Population experts try 

to understand this behavior over time which depends on several parameters such 

as resources available, the effect of infections, overcrowding, etc.   
 

In situations of random behavior, chaos theory helps to draw sensible 

information.   

As complex systems contain so much dynamics, computers are required to 

calculate various possibilities, and hence computational techniques will be 

widely useful.  

2.9.2 Properties of Chaotic Systems: 
 

The Chaotic theory is based on the property that complex behavior arises from 

the iterations of simple nonlinear rules on the system. The chaotic solution is 

always sensitive to initial conditions, bounded and aperiodic. The following are 

some interesting properties of chaotic systems: 

(a) In phase space, due to exponential divergence and boundedness, 

stretching and folding of chaotic solutions always take place.   

(b) These systems are either Dissipative or Conservative  

(c)  Chaotic systems can be controlled.  

(d) Chaotic systems can be synced to one another. Multiple chaotic systems 

can be joined to bring a constant difference in their outputs. Outputs lag 

one another by a time lag and phase synchronization occurs. Their 

outputs are related to each other by an invertible map.    
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2.9.3 Routes to Chaos 
 

The following are the major routes to Chaos 

(a) The period-doubling route: Here, many sub-harmonic bifurcations occur 

within the system, which eventually accumulates at the critical value.  

(b) The quasi-periodic route: This leads to chaos. In this, there occurs 

numerous periodic solutions with irrationally related frequencies.   

(c) The intermittency route: Here the behavior is almost periodic. However, 

regimes of irregular behavior are observed.  

2.10 Lyapunov function and Lyapunov stability 
 

Lyapunov functions are very significant in the study of dynamical systems. 

While investigating the stability of ordinary differential equations, we construct 

certain scalar functions known as Lyapunov functions to prove equilibrium’s 

stability [74]. The existence of Lyapunov functions is a necessary and sufficient 

condition for the stability of a certain class of ordinary differential equations.  
 

Aleksandr Lyapunov in his thesis ‘The general problem of stability of motion’ 

developed the global approach to the stability analysis of nonlinear dynamical 

systems[75]. He made comparisons with the popular method of linearization 

about the equilibrium points. 
 

2.10.1 Definitions 
For an autonomous nonlinear dynamical system  

𝑥̇ = 𝑓൫𝑥(𝑡)൯, 𝑥(0) = 𝑥଴,   Eqn. (2.33) 
 

where 𝑥(𝑡) ∈ 𝑆 ⊆ ℝ௡denotes the system state vector, 𝑆 and open set containing 

the origin, and 𝑓: 𝑆 → ℝ௡continuous on 𝑆. Let 𝑓 has an equilibrium at 𝑥௘ so that 

𝑓(𝑥௘) = 0 then  

1. The equilibrium of Eqn. (3.33) is said to be Lyapunov stable, if ∀ 𝜖 >

0, ∃ 𝛿 > 0 such that, if ‖𝑥(0) − 𝑥௘‖ < 𝛿, then for every 𝑡 ≥ 0, we have 

‖𝑥(𝑡) − 𝑥௘‖ < 𝜖. 
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2. The equilibrium of Eqn. (3.33) is asymptotically stable of it is Lyapunov 

stable and ∃ 𝛿 > 0 ∋ if ‖𝑥(0) − 𝑥௘‖ < 𝛿, then lim
௧→ஶ

‖𝑥(𝑡) − 𝑥௘‖ = 0. 

3. The equilibrium of Eqn. (3.33) is exponentially stable if it is stable 

asymptotically and ∃ {𝛼, 𝛽, 𝛿} > 0 ∋ if   ‖𝑥(0) − 𝑥௘‖ < 𝛿, then 

            ‖𝑥(𝑡) − 𝑥௘‖ ≤ 𝛼‖𝑥(0) − 𝑥௘‖𝑒ିఉ௧, ∀ 𝑡 ≥ 0. 

 At any equilibrium, if the solution close to the equilibrium remains close 

forever, then it is known as Lyapunov stability. 
 

 If the solutions close to any equilibrium not only remain close but also, 

gradually converge to the equilibrium, it is called as asymptotically 

stable. 
 

 If the solutions close to equilibrium points converge much rapidly 

towards the equilibrium, then it is called exponentially stable. 

2.11 Basic Lyapunov theorem 
 

Consider a non-negative locally positive definite function 𝑉(𝑥, 𝑡) whose 

derivative 𝑉̇ is taken along the trajectories of the system. Then if, 

 𝑉̇(𝑥, 𝑡) ≤ 0 locally in 𝑥 and ∀ 𝑡, then the system’s origin is locally stable 

in the Lyapunov sense. 

 𝑉(𝑥, 𝑡) is also decrescent, and  𝑉̇(𝑥, 𝑡) ≤ 0 locally in 𝑥 and ∀ 𝑡, then the 

system’s origin is uniformly locally stable in the Lyapunov sense. 

 𝑉(𝑥, 𝑡) is also decrescent, and  −𝑉̇(𝑥, 𝑡) is locally positive definite, then 

the system’s origin is uniformly locally asymptotically stable. 

 𝑉(𝑥, 𝑡) is also decrescent, and  −𝑉̇(𝑥, 𝑡) is positive definite, then the 

system’s origin is globally uniformly asymptotically stable. 
 

Along the system trajectories, the time derivative of 𝑉 is given by the equation 

𝑉̇ห
௫̇ୀ௙(௫,௧)

=
డ௏

డ௧
+

డ௏

డ௫
𝑓.          Eqn. (2.34) 
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2.12 Motivation for Further Work 
 

For the past few decades, dynamical systems theory has been attracting 

researchers from various disciplines whose aim is to understand the dynamic 

behavior of the systems and to gain some control over the systems on which 

they are working.  The dynamical systems phenomena can be found in various 

disciplines like biology, physics, chemistry, engineering, finance, political 

science, and economics.  Most of these systems are nonlinear and are studied 

by using ordinary differential equations.  Discrete dynamical systems theory 

plays its role in understanding the dynamics of higher-order systems wherein 

the complicated behavior of higher-order systems can be studied by reducing 

the continuous problem into a discrete problem and thereby applying the 

techniques of discrete dynamical systems [59]. The study of dynamical systems 

introduced new theories like Chaos and Bifurcation.  
 

The relevance of the dynamical systems theory comes from the conceptual and 

quantitative tools it offers. Most of the biological studies like chaos in cardiac 

rhythm, brain, or population dynamics can be brought into the framework of 

nonlinear dynamics for better treatment and understanding[81].    
 

In the study of biological systems, the dynamics are often explored 

computationally through qualitative techniques. The solutions behavior at 

equilibria is investigated by linearization technique. The main goal is to observe 

whether the solutions of nonlinear systems at the origin resemble those of the 

linearized system. The study of equilibria and global nonlinear techniques plays 

a vital role in this study.   
 

In literature, one can find many well-developed mathematical models in the 

domains of infectious diseases, predator/prey or host/parasite systems, 

competitive species, and competition & harvesting. Researchers from various 

domains study, implement and extend these models while investigating 
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problems of their domain.  Biological species always aim for their existence and 

engage in the quest for resources. Based on the application, prey-predator 

models assume various forms such as resource-consumer, host-parasite, tumor 

cells-immune systems, susceptibles-infectors, etc. As these processes involve 

loose-win-like situations, these models can be effectively implemented outside 

the ecosystems as well.   
 

The wide variety of applications of dynamical system study of biological 

systems fascinated us and motivated us for the qualitative study of various 

mathematical models in biology.  
 

2.13 Conclusion 
 

Dynamical systems and theories like chaotic theory, the fractal theory has 

various applications in various domains of biology, medicine, and sciences. 

Scientists are not restricting their studies to simple, closed, and deterministic 

systems. They are aiming to understand the behavior of large complex open 

dynamical systems. Mathematicians are gaining insights into the systems from 

other domains, which in turn is helping them to develop fruitful results for 

understanding and explaining the nonlinear phenomena. All the methods 

discussed in this chapter help one to get a deep insight into a variety of 

dynamical behavior of real-world systems. 

 



 

41 
 

CHAPTER 3. DYNAMICS OF A THREE 

DIMENSIONAL CHAOTIC CANCER MODEL 

3.1 Introduction 
 

Cancer is a dangerous disease involving abnormal growth of cells with potential 

chances of diffusing to other body parts. In the present era, cancer is one of the 

major health concerns and is considered to be one of the main causes of death 

globally. Each year, millions of death cases, are reported due to various types 

of cancers. Statistics from international agencies such as Global Cancer 

Observatory (GCO) and World Health Organization (WHO) reveal that women 

generally fall victims to breast, colorectal, cervix, and stomach cancers while 

prostate, lung, and liver cancers are most common in men [82]–[84]. The life 

cycle of cells in multicellular organisms is regulated by apoptosis, a process for 

the elimination of cells, leading to cell death, through a sequence of 

programmed events. In this mechanism, there is no influence of harmful 

substances on the neighboring areas. Cancer cells skip this apoptosis 

mechanism, which allows them to grow beyond their natural capacity spreading 

into the other parts of the body. This process is termed metastasis, which brings 

death to cancer patients [85]. 
 

To understand the cancer dynamics, doctors usually rely on clinical trials.  

Clinical trials are helpful to determine whether new treatments are safe and 

effective and work better than the existing treatments in preventing cancer. 

Usually, clinical trials involve high costs and are time-consuming. So the 

specialists working on cancer treatments believe in developing alternative and 
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feasible mechanisms for understanding the dynamics of cancer. There are very 

few ways of treating the disease like surgery and radiotherapies. In many cases, 

the chances of survival are very less. For the survival of patients, the amount of 

administrated therapy is very significant. During the therapy, there is a danger 

to healthy cells. Sometimes, they are killed along with unwanted tumor cells in 

which the situation becomes more serious for the patient. The therapy does not 

only kill the tumor cells but also kills some healthy tissues resulting in serious 

damage. Many of the curative techniques are still in their infancy. The need to 

address the preventive measures and successful treatment strategies are 

necessarily required. Mathematical modeling helps us to understand the short 

and long-term dynamics of cancer. Numerous models have been developed to 

understand the dynamic interactions of tumor growth, immune system, and 

different curing methods such as immunotherapy or chemotherapy.  

 

There are investigations using cellular automata for the tumor growth models. 

These comprise very precise patient characteristics, tumors, and drugs which 

are presented in the models [60], [86], [87]. Both PDE and cellular automata 

approach for modeling growth of a tumor was used by Anderson and Chaplin; 

Enderling et al [88], [89]. de Pillis and Radunskaya in their work constructed a 

generalized growth model of a tumor using ordinary differential equations [10]. 

In this model, they studied the dynamics of tumor by means of healthy, tumor, 

and immune cells. Prey-predator models were successfully implemented by 

several researchers for studying the interactions between tumor and immune 

cells [8]–[15].  
 

Inside the human body, the interactions in the immune system with the target 

populations of bacteria, viruses, tumor cells are considered dynamical 

processes. It is argued that tumor growth is extremely sensitive to the initial 

conditions and hence is classified as a chaotic dynamical system. Various 

chaotic models have been proposed to well fit the observations. In the present 

study, a three-dimensional model of cancer tumor growth involving the 

interactions between tumor, healthy tissue, and activated immune system cells 



43 
 

is considered. The dynamics of the model are explored by performing 

computationally the local equilibria stability and established the existence of 

chaos in the proposed model. 

3.2 The mathematical model 
 

The model equations developed are 

⎩
⎪
⎨

⎪
⎧

ௗ௫

ௗ௧
= 𝛼𝑥(1 − 𝑦)(1 + 𝑧) − 𝑥ଶ𝑦

ௗ௬

ௗ௧
= 𝛽𝑦(1 − 𝑧)(1 + 𝑥) − 𝑦ଶ𝑧

ௗ௭

ௗ௧
= 𝛾𝑧(1 − 𝑥)(1 + 𝑦) − 𝑧ଶ𝑥

  Eqn. (3.1) 

where 𝑥(𝑡), 𝑦(𝑡) and 𝑧(𝑡) are the number of tumor cells, healthy host cells, and 

effector immune cells at time 𝑡 in a single tumor – site compartment.  
 

The parameters 𝛼, 𝛽 and 𝛾 belonging to ℝ are non-negative and arbitrary 

representing the per capita growth rates of tumor, healthy host, and effector 

immune cells respectively. 
 

It is an idealized model demonstrating how varieties of immune responses are 

generated by the combination of nonlinear interactions proposed among the 

immune system and its targets. The solutions of the model correspond to three 

different states namely virgin state, immune state, and state of tolerance in the 

terminology of an immunologist. It replicates the primary and secondary 

responses. In addition, for the transplanted tumor cells, the model predicts the 

threshold level. The tumor graft is rejected or the host eliminates the infectious 

species below this threshold. Sometimes, the tumor cells present in the 

bloodstream are very significant for the study. Such situations arise in cases like 

leukemia. ODEs can be successfully implemented for such studies. The present 

model can be considered for developing new administration methodologies for 

drugs in cancer treatment. The details like the effects of drugs administrated on 

the metabolism of patients are very helpful.   
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3.3 Local Asymptotic Stability of Equilibria 
 

The equilibria are computed by solving 𝑋̇ = 𝐹(𝑋) = 0, where 𝑋 = (𝑥, 𝑦, 𝑧)் 

and 𝐹 = [𝑓, 𝑔, ℎ]் and  

𝑓(𝑥, 𝑦, 𝑧) = 𝛼𝑥(1 − 𝑦)(1 + 𝑧) − 𝑥ଶ𝑦, 𝑔(𝑥, 𝑦, 𝑧) = 𝛽𝑦(1 − 𝑧)(1 + 𝑥) − 𝑦ଶ𝑧 

and ℎ(𝑥, 𝑦, 𝑧) = 𝛾𝑧(1 − 𝑥)(1 + 𝑦) − 𝑧ଶ𝑥. 

 

The following four equilibria are obtained analytically 
 

 (𝑥, 𝑦, 𝑧) = (0,0,0) 

 (𝑥, 𝑦, 𝑧) = ቀ0, −1,
ఉ

ఉିଵ
ቁ  𝑖𝑓 𝛽 ≠ 1 

 (𝑥, 𝑦, 𝑧) = ቀ
ఊ

ఊିଵ
, 0, −1ቁ if 𝛾 ≠ 1 

 (𝑥, 𝑦, 𝑧) = ቀ−1,
ఈ

ఈିଵ
, 0ቁ  𝑖𝑓 𝛼 ≠ 1 

 

One last equilibrium corresponding to the case {𝑥, 𝑦, 𝑧} ≠ 0 must be 

considered, but it has no analytical expression. It could be found from the 

numerical solution of the equations below. 
 

 
 

For studying the equilibrium point stability, we must choose an equilibrium 

point and find the Jacobian at that equilibrium point and check its eigenvalues. 

For each eigenvalue, if the real part is negative, then there is a stable 

equilibrium. We get an unstable equilibrium if there is at least one eigenvalue 

whose real part is positive. If one of the eigenvalues is 0, then that equilibrium 

point may be stable or unstable.    
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3.3.1 Stability at (𝟎, 𝟎, 𝟎) 
 

The Jacobian 
డி

డ௫
 about the equilibrium (0,0,0) is 

൭
𝛼 0 0
0 𝛽 0
0 0 𝛾

൱ 

Theorem 3.1: The equilibrium (0,0,0) is locally asymptotically stable if all the 

parameters 𝛼, 𝛽, and 𝛾 are negative. 
 

Proof. The eigenvalues of the Jacobian about (0,0,0) are 𝛼, 𝛽, and 𝛾. All the 

parameters are real and if they are negative then the equilibrium (0,0,0) is 

locally asymptotically stable.  

A pair of 50 initial values are taken where all the three parameters are taken as                                            

𝛼 = −0.1334, 𝛽 = 0.1024, and 𝛾 = −0.9591. The corresponding trajectory 

plots are given in the following Fig. 3.1.1 and Fig. 3.1.2 

Since 𝛼, 𝛽 and 𝛾 are meant to be positive and hence the equilibrium (0,0,0) is 

practically not feasible. 

 

Fig. 3. 1.1 Trajectory plots which are attracting towards the origin for 50 
different initial values with negative parameters. 
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Fig. 3.1.2. The corresponding 3D version of the trajectory plots of                   
Fig 3.1.1.  

Around the neighborhood of the equilibrium point (0,0,0), a pair of 20 

dissimilar initial conditions were taken. Here the three parameters are taken as 

𝛼 = 0.7455, 𝛽 = 0.7363, and 𝛾 = 0.5619 whose trajectories are plotted in the 

following Fig. 3.2.1 and Fig. 3.2.2. 

 

Fig.3. 2.1 Trajectory plots which are repelling towards the origin for 20 
different initial values with positive parameters 𝜶 = 𝟎. 𝟕𝟒𝟓𝟓,                      
 𝜷 = 𝟎. 𝟕𝟑𝟔𝟑, and 𝜸 = 𝟎. 𝟓𝟔𝟏𝟗. 
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Fig.3.2.2. The corresponding 3D version of the trajectory plot of Fig 3.2.1. 

 
3.3.2 Local Stability of (𝟎, −𝟏, 𝜷/(𝜷 − 𝟏)) 

The Jacobian 
డி

డ௫
 about the equilibrium (0, −1,

ఉ

ఉିଵ
) is 

⎝

⎜
⎜
⎜
⎛

2𝛼 ൬
𝛽

𝛽 − 1
+ 1൰ 0 0

𝛽 ൬
𝛽

𝛽 − 1
− 1൰

2𝛽

𝛽 − 1
− 𝛽 ൬

𝛽

𝛽 − 1
− 1൰ 𝛽 − 1

−
𝛽ଶ

(𝛽 − 1)ଶ

𝛽𝛾

𝛽 − 1
0

⎠

⎟
⎟
⎟
⎞

 

 

Theorem 3.2: The equilibrium (0, −1,
ఉ

ఉିଵ
) is locally asymptotically stable if  

𝛼 >
1

2
,
2𝛼 − 1

4𝛼 − 1
< 𝛽 <

1

2
, 0 < 𝛾 <

2𝛽 − 1

𝛽ଶ − 𝛽
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A comprehensive list of parameters 𝛼, 𝛽 and 𝛾 satisfying the condition for  local 

asymptotic stability of (0, −1,
ఉ

ఉିଵ
) are fetched. The parameters are plotted in 

Fig. 3.3. 

 

 

Fig. 3. 3. Parameter space (𝜶, 𝜷, 𝜸) for which the fixed point (𝟎, −𝟏,
𝜷

𝜷ି𝟏
) 

is attracting. 

 

A pair of 50 different initial values are taken where the three parameters are 

taken as 𝛼 = −0.1334, 𝛽 = −0.1024, and 𝛾 = −0.9591 whose trajectories are 

plotted in the following Fig. 3.4.1 and 3.4.2. 

 

 

 

 

 

 

 

 



49 
 

 

Fig.3.4.1 Trajectory plots which are attracting towards the fixed point  

(𝟎, −𝟏,
𝜷

𝜷ି𝟏
) for 50 different initial values. 

 

 

 

Fig.3.4.2 The corresponding 3D trajectory plot of Fig. 3.4.1.  



50 
 

A pair of 50 initial values are taken where all the three parameters are taken as                                            

𝛼 = 0.9064, 𝛽 = 0.3927, and 𝛾 = 0.0249. The corresponding repelling 

trajectories are depicted in the following Fig. 3.5.1 and Fig 3.5.2.  

 

Fig. 3. 5.1. Trajectory plots which are repelling from (𝟎, −𝟏,
𝜷

𝜷ି𝟏
) for 50 

initial values. 

 

Fig. 3.5.2.  The corresponding 3D trajectory plot of Fig. 3.5.1.  
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3.3.3 Local Stability of (𝜸/(𝜸 − 𝟏), 𝟎, −𝟏) 
 

The Jacobian 
డி

డ௫
 about the equilibrium (

ఊ

ఊିଵ
, 0, −1) is 

⎝

⎜
⎜
⎜
⎛

0 −
𝛾ଶ

(𝛾 − 1)ଶ

𝛼𝛾

𝛼 − 1

0 2𝛽 ൬
𝛾

𝛾 − 1
+ 1൰ 0

𝛾 − 1 𝛾 ൬
𝛾

𝛾 − 1
− 1൰

2𝛾

𝛾 − 1
− 𝛾 ൬

𝛾

𝛾 − 1
− 1൰

⎠

⎟
⎟
⎟
⎞

 

Theorem 3.3: The locally asymptotic stability condition for the equilibrium 

(
ఊ

ఊିଵ
, 0, −1) is  

0 < 𝛽 ≤
1

2
, 0 < 𝛾 <

𝛼 + 2

2𝛼
−

1

2
ඨ

𝛼ଶ + 4

𝛼ଶ
 

A comprehensive list of parameters 𝛼, 𝛽 and 𝛾 are fetched satisfying the local 

asymptotic stability condition of  (
ఊ

ఊିଵ
, 0, −1). The parameters are plotted in 

Fig. 3.6. 

 

Fig. 3. 6. Parameter space (𝜶, 𝜷, 𝜸) for which the fixed point (
𝜸

𝜸ି𝟏
, 𝟎, −𝟏) 

is attracting. 
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A pair of 50 different initial values are taken where the three parameters are 

taken as 𝛼 = −0.1334, 𝛽 = −0.1024, and 𝛾 = −0.9591 whose trajectories are 

depicted in Fig. 3.7.1, and Fig. 3.7.2. 

 

Fig.3.7.1. Trajectory plots which are attracting towards the fixed point  

(
𝜸

𝜸ି𝟏
, 𝟎, −𝟏) for 50 different initial values. 

 

Fig.3. 7. 2. The corresponding 3D trajectory plot of Fig. 3.7.1.  
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The fixed point (0, −1,
ఉ

ఉିଵ
) does repel. When (𝛼 = 0.0350, 𝛽 = 0.4402, 𝛾 =

0.4398) and (𝛼 = 0.775, 𝛽 = 0.6184, 𝛾 = 0.9385) for all initial values taken 

in the neighborhood of (0, −1,
ఉ

ఉିଵ
). The trajectories are repelling as shown in 

Fig. 3.8.1, Fig 3.8.2, Fig 3.8.3, and Fig 3.8.4 respectively. 

 

Fig.3.8.1 Trajectory plots which are repelling from the fixed point 

(𝟎, −𝟏,
𝜷

𝜷ି𝟏
) for 50 different initial values for 𝜶 = 𝟎. 𝟎𝟑𝟓𝟎, 𝜷 =

𝟎. 𝟒𝟒𝟎𝟐, 𝜸 = 𝟎. 𝟒𝟑𝟗𝟖. 

 

Fig.3.8.2. The corresponding 3D trajectory plot of Fig 3.8.1. 
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Fig.3.8.3 Trajectory plots which are repelling from the fixed point 

(𝟎, −𝟏,
𝜷

𝜷ି𝟏
) for 50 different initial values for  𝜶 = 𝟎. 𝟕𝟕𝟓, 𝜷 = 𝟎. 𝟔𝟏𝟖𝟒, 𝜸 =

𝟎. 𝟗𝟑𝟖𝟓. 

 

 

 Fig.3.8.4. The corresponding 3D trajectory plot of Fig 3.8.3. 
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3.3.4 Local Stability of (−𝟏, 𝜶/(𝜶 − 𝟏), 𝟎) 
 

The Jacobian 
డி

డ௫
 about the equilibrium (−1,

ఈ

ఈିଵ
, 0) is 

⎝

⎜
⎛

0 0 0

2𝛼𝛽

𝛼 − 1

2𝛼

𝛼 − 1
+ 2𝛽 −

𝛼 ቀ
𝛼

𝛼 − 1
+ 𝛽ቁ

𝛼 − 1
𝛼𝛾

𝛼 − 1
+ 𝛾 − 1 −𝛾 ቀ

𝛼

𝛼 − 1
+ 1ቁ 𝛾 ⎠

⎟
⎞

 

Theorem 3.4: The local asymptotic stability condition for the equilibrium 

(−1,
ఈ

ఈିଵ
, 0) is given by 

𝛼 =
1

2
,
1

2
< 𝛽 < 1, 0 < 𝛾 <

1 − 2𝛽

𝛽 − 1
 

A comprehensive list of parameters 𝛼, 𝛽 and 𝛾 are fetched satisfying the local 

asymptotic stability condition of (−1,
ఈ

ఈିଵ
, 0). The parameters are plotted in 

Fig. 3.9.  

 

Fig. 3.9. Parameter space (𝜶, 𝜷, 𝜸) for which the fixed point (−𝟏,
𝜶

𝜶ି𝟏
, 𝟎) 

is attracting. 
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A pair of 50 different initial values are taken where the three parameters are 

taken as 𝛼 = 0.5, 𝛽 = 0.5, and 𝛾 = 0.00039 whose trajectories are plotted in 

Fig. 3.10.1, and Fig. 3.10.2 

 

Fig.3.10.1 Trajectory plots which are attracting towards the fixed point  

(−𝟏,
𝜶

𝜶ି𝟏
, 𝟎) for 50 different initial values. 

. 

Fig.3.10.2. The corresponding 3D trajectory plot of Fig 3.10.1.  
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When (𝛼 = 0.8149, 𝛽 = 0.3496, 𝛾 = 0.0216) and (𝛼 = 0.4049, 𝛽 =

0.4824, 𝛾 = 0.0639) for all initial values taken in the neighborhood of 

(−1,
ఈ

ఈିଵ
, 0), the trajectories are repelling as shown in figures Fig. 3.11.1-                   

Fig. 3.11.4 respectively. 
 

 

Fig.3.11.1 Trajectory plots which are repelling from the fixed point 

(−1,
ఈ

ఈିଵ
, 0) for 50 different initial values for 𝜶 = 𝟎. 𝟖𝟏𝟒𝟗, 𝜷 =

𝟎. 𝟑𝟒𝟗𝟔, 𝜸 = 𝟎. 𝟎𝟐𝟏𝟔. 

 

Fig.3.11.2. The corresponding 3D trajectory plot of Fig 3.11.1. 



58 
 

 

Fig.3.11.3 Trajectory plots which are repelling from the fixed point 

(−1,
ఈ

ఈିଵ
, 0) for 50 different initial values for 𝜶 = 𝟎. 𝟒𝟎𝟒𝟗, 𝜷 =

𝟎. 𝟒𝟖𝟐𝟒, 𝜸 = 𝟎. 𝟎𝟔𝟑𝟗. 

 

Fig.3.11.4. The corresponding 3D trajectory plot of Fig 3.11.3. 
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3.4 Chaotic solutions 
 

The study reveals that the system exhibits chaos with the selected parameters. 

It has been observed that whenever the repelling of equilibrium (0,0,0) 

happens, then chaos occurs in the system for any initial conditions considered 

in the neighborhood of (0,0,0). From this observation, the following theorem 

was considered. 
 

Theorem 3.5. The system exhibits a chaotic solution for all positive values of 

the parameters 𝛼, 𝛽, and 𝛾. 

A region of parameters (𝛼, 𝛽, 𝛾) ⊂ ℝଷ is estimated, where the system possesses 

chaotic solutions. The region is shown in Fig. 3.12. The parameters and the 

corresponding three-dimensional chaotic trajectories for 50 different initial 

values from the neighborhood of the origin are shown in the figures Fig. 3.13.1 

– Fig. 3.13.3.  Here different colors in the chaotic attractor correspond to 50 

different sets of initial values.  

 

Fig. 3.12. Region of parameters (𝜶, 𝜷, 𝜸) ⊂ ℝ𝟑 for which the solution is 

chaotic. 
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Fig. 3.13.1 Chaotic trajectory plots which are repelling from the fixed 

point (𝟎, 𝟎, 𝟎) for 𝜶 = 𝟎. 𝟐𝟖𝟑𝟒, 𝜷 = 𝟎. 𝟔𝟖𝟐𝟓 and 𝜸 = 𝟎. 𝟑𝟓𝟖𝟏.  

 

 

Fig. 3.13.2 Chaotic trajectory plots which are repelling from the fixed 

point (𝟎, 𝟎, 𝟎) for 𝜶 = 𝟎. 𝟔𝟔𝟓𝟖, 𝜷 = 𝟎. 𝟗𝟕𝟑𝟑 and 𝜸 = 𝟎. 𝟔𝟐𝟕𝟕.  
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Fig. 3.13.3 Chaotic trajectory plots which are repelling from the fixed 

point (𝟎, 𝟎, 𝟎) for 𝜶 = 𝟎. 𝟑𝟒𝟒𝟎, 𝜷 = 𝟎. 𝟓𝟑𝟑𝟕 and 𝜸 = 𝟎. 𝟔𝟐𝟕𝟖.  
 

 

 

The two-dimensional projections in the 𝑥𝑦, 𝑦𝑧 𝑎𝑛𝑑 𝑧𝑥 planes are plotted in Fig 

3.13.4 – Fig. 3.13.6, for all the three chaotic attractors as stabled in Fig. 3.13.1 

– Fig. 3.13.3. The trajectory plot up to 10ହ iterations are given for 50 different 

initial values for each of the set of parameters as given in Fig. 3.13.1 – Fig. 

3.13.3 
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Fig.3.13.4 Projection of chaotic attractor in 𝒙𝒚, 𝒚𝒛 and 𝒛𝒙 planes for 

parameter values 𝜶 = 𝟎. 𝟐𝟖𝟑𝟒, 𝜷 = 𝟎. 𝟔𝟖𝟐𝟓 and  𝜸 = 𝟎. 𝟑𝟓𝟖𝟏. 
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Fig.3.13.5 Projection of chaotic attractor in 𝒙𝒚, 𝒚𝒛 and 𝒛𝒙 planes for 

parameter values 𝜶 = 𝟎. 𝟔𝟔𝟓𝟖, 𝜷 = 𝟎. 𝟗𝟕𝟑𝟑 and 𝜸 = 𝟎. 𝟔𝟐𝟕𝟕. 
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Fig.3.13.6 Projection of chaotic attractor in 𝒙𝒚, 𝒚𝒛 and 𝒛𝒙 planes for 

parameter values 𝜶 = 𝟎. 𝟑𝟒𝟒𝟎, 𝜷 = 𝟎. 𝟓𝟑𝟑𝟕 and  𝜸 = 𝟎. 𝟔𝟐𝟕𝟖. 

3.5 What happens if all the parameters are the same? 
 

Although the issue about equality of parameters 𝛼, 𝛽, and 𝛾 might not attractive, 

still out of mathematical curiosity, the study aims to understand what happens 

to the system. Here all the parameters were fixed to be the same. Following we 

shall have the three-dimensional trajectories with two dimensional projections 

in the 𝑥𝑦, 𝑦𝑧 and 𝑧𝑥 planes. The solution of the system was found to remain 

chaotic. 
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Fig. 3.14. Identical parameters and chaotic trajectory plots. 

The chaotic trajectory plots for the parameters corresponding to Fig. 3.13.1 - 

Fig. 3.13.3 are plotted in the figures Fig. 3.15.1 - Fig. 3.15.3. 

 

Fig. 3.15.1. Chaotic trajectory plot for parameters 𝜶 = 𝟎. 𝟐𝟖𝟑𝟒,                    

 𝜷 = 𝟎. 𝟔𝟖𝟐𝟓, and 𝜸 = 𝟎. 𝟑𝟓𝟖𝟏. 
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Fig. 3.15.2. Chaotic trajectory plot for parameters 𝜶 = 𝟎. 𝟔𝟔𝟓𝟖,                    

 𝜷 = 𝟎. 𝟗𝟕𝟑𝟑, and 𝜸 = 𝟎. 𝟔𝟐𝟕𝟕. 

 

 

Fig. 3.15.3. Chaotic trajectory plot for parameters 𝜶 = 𝟎. 𝟑𝟒𝟒𝟎,                    

 𝜷 = 𝟎. 𝟓𝟑𝟑𝟕, and 𝜸 = 𝟎. 𝟔𝟐𝟕𝟖. 
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Fig. 3. 16. Projection of Chaotic attractor as shown in Fig. 3. 14 in 𝒙𝒚, 𝒚𝒛 

and 𝒛𝒙 planes. 
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3.6 Conclusion 
 

In the current chapter, a new three-dimensional chaotic model is defined and 

analyzed computationally for the growth of cancer cells. 

 The model studies the interactions between the tumor cells, healthy 

tissue cells, and effector immune cells. The competitions among these 

cells are studied. The model got its inspiration from population 

dynamics.  

 The study establishes the occurrence of chaos for a range of positive 

parameters 𝛼, 𝛽, and 𝛾. 

 The Hurst exponent and fractal dimension are computed for confirming 

the chaotic dynamics.  

 It is observed that all three parameters are very sensitive. 

Some previous studies claim that exhibition of chaos by a few similar cancer 

models but they have not explicitly established the existence of chaos.  This 

work provides an encouragement to develop and study realistic models 

exhibiting chaos.  
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CHAPTER 4. COMPUTATIONAL DYNAMICS OF 

NICHOLSON-BAILEY MODELS 

4.1 Introduction 
 

In population dynamics, the Nicholson-Bailey model describes the host-

parasitoid system which has been well studied by considering positive real 

values for all the parameters [17], [31], [44], [90], [91].  In this study, the 

dynamics in the Nicholson-Bailey model is reinvestigated by considering all 

the parameters as real numbers and observed that the model has all sorts of 

dynamics behavior such as chaotic, periodic, and locally stable/unstable 

equilibriums. 
 

In addition to the classical Nicholson-Bailey system, the dynamics of the scaled 

and noisy models were considered and observed several interesting results 

about periodicity and chaotic nature of the models.  
 

A standard basis of population biology models is the host-parasite interactions 

as presented in [92], [93]. Biological control models played a significant role in 

the long history of theoretical development. These models focused mainly on 

the interactions between the hosts and parasitoids. [94].  
 

Understanding the host-parasitoid dynamics is the primary key for biological 

control. Hence the stability analysis of the host-parasite models has received 

considerable attention [95].  
 

4.2 The Nicholson-Bailey Model 
 

While investigating the interactions between the hosts and insect parasitoids a 

discrete model was proposed by Nicholson and Bailey [17]. This model was 

constructed from the mechanistic viewpoint of searching behavior of parasitoid. 

The concept is identical to the model of Lotka-Volterra. In this classical model, 

the parasitoids search independently and randomly in a homogeneous 

environment, with the consequence that both host and parasitoid populations  
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exhibit diverging oscillations [96]. Later on Hassel and May, assumed that 

parasites aggregate on host population due to which behavioral stabilization 

was introduced in the standard Nicholson-Bailey model [18].  
 

The Nicholson-Bailey model is a coupled nonlinear system given by  

 

൝
𝑥௡ାଵ = 𝑥௡ ቀ𝑒

௥ቀଵି
ೣ೙
ೖ

ቁି௔௬೙ቁ

𝑦௡ାଵ = 𝑥௡(1 − 𝑒ି௬೙)
      Eqn. (4.1) 

 

Populations display lagged oscillations which is a typical nature of the 

Nicholson-Bailey model [93]. Here peaks and troughs are found in the size of 

parasite population lagging those in the size of host population until the 

extinction of parasites. At this point, the population of the hosts explodes.  
 

Hassel had proved that that refuges can help in stabilizing the dynamics of the 

Nicholson-Bailey model [17]. These refuges sets free some of the hosts from 

being predated and shield a constant number or proportion of hosts.  
 

Another dynamical system corresponding to the above Nicholson-Bailey model 

Eqn. (5.1) was defined as follows: 

൝
𝑥௡ାଵ = (𝑥௡ + 𝛼) ቀ𝑒

௥ቀଵି
ೣ೙
ೖ

ቁି௔(௬೙ାఉ)
ቁ

𝑦௡ାଵ = (𝑥௡ + 𝛼)(1 − 𝑒ି௔(௬೙ାఉ))
   Eqn. (4.2) 

This dynamical system Eqn. (4.2) is a scaled Dynamical system where 𝛼 and 

𝛽 are scaling factors.  
 

Here 𝑥௡ and 𝑦௡are host and parasitoid populations at time 𝑛, 𝑟 is the host 

reproduction rate, 𝑎 is the search efficiency and 𝑘 is the host’s carrying capacity 

[20], [41], [97], [98]. 
 

In the present study, these parameters are abstracted and widened over the set 

of real numbers. Nicholson and Bailey developed realistic models of two 

species interaction for describing a simple parasitoid-host population dynamics 
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model in discrete time, that became the classical model in population biology 

[99], [100]. Most of the real world host-parasitoid systems are more stable than 

Nicholson-Bailey. This shows that the classical model cannot accurately 

represent the real systems. Therefore some population models with little 

variants were developed and studied [39], [101]. But in all these models, the 

parameters of the model were restricted to positive real numbers which is quite 

natural and make sense [25]. 
 

From our curiosity, an attempt has been made to apprehend the general 

dynamics of the model when the parameters are relaxed over the real line, which 

is certainly an abstraction of the model. The motivation to extend the parameters 

towards the real line was to investigate the possibility of bilateral symmetry in 

dynamics.  
 

Also, the system was studied by introducing Gaussian noise to the Nicholson-

Bailey model which enabled us to develop deep understanding of the dynamics 

of the stochastic model. So, in this work an abstract coupled discrete dynamical 

system was considered.   
  

4.3 Local Asymptotic Stability of Fixed Points 
 

In this section, both dynamical systems equations Eqn. (4.1) and Eqn. (4.2) 

were considered to explore the local asymptotic stability of the fixed points 

[101]. 
 

For the system Eqn. (4.1), the fixed points are basically a solution of the system 

below 

൝
𝑥̅ = 𝑥̅  ൬𝑒

௥ቀଵି
ഥೣ

ೖ
ቁି௔௬ത൰

𝑦ത = 𝑥̅(1 − 𝑒ି௔௬ത)
   Eqn. (4.3) 

 

 

Here (0,0) is trivial fixed point and one of the other non-trivial fixed points 

is (𝑘, 0). The stability of these two fixed points, which is locally asymptotic, is 

explored as follows: 
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For the fixed point (𝑥,ഥ 𝑦ത), the local stability depends on the character of the 

eigenvalues of the Jacobian at (𝑥,ഥ 𝑦ത). The Jacobian about the fixed point (𝑥,ഥ 𝑦ത) 

is denoted as 𝐽(௫,ഥ ௬ത). Here, 

 

𝐽(௫,ഥ ௬ത) = ቌ𝑒
௥ቀଵି

ഥೣ

ೖ
ቁି௔௬ത

−
௘

ೝቀభష
ഥೣ
ೖ

ቁషೌ೤ഥ
௥௫̅

௞
1 − 𝑒ି௔௬ത

−𝑎𝑒
௥ቀଵି

ഥೣ

ೖ
ቁି௔௬ത

𝑥̅ 𝑎𝑒ି௔௬ത 𝑥̅

ቍ  Eqn. (4.4) 

 

 

In concluding the nature of the fixed points, the following classical theorem is 

very important. 
 

 

 

Theorem 4.1  : The fixed point (𝒙,ഥ 𝒚ഥ) is an attractor / repeller if the modulus 

of each eigenvalue of the Jacobian 𝑱(𝒙,ഥ 𝒚ഥ) is less than 1/greater than 1 

respectively. If the moduli of the eigenvalues are 1, (𝒙,ഥ 𝒚ഥ) is a saddle point.  
 

The eigenvalues of 𝐽(଴,଴) are obtained as 0 and 𝑒௥. Hence by the above theorem 

4.1, the fixed point (0,0) 

 becomes an attractor, if 𝑟 < 0. 

 becomes a saddle point, if 𝑟 = 0. 

 becomes a repeller, if 𝑟 > 0. 

About the fixed point (𝑘, 0), the eigenvalues are 𝑎𝑘 and 1 − 𝑟 and therefore 

by the above theorem, the fixed point (𝑘, 0) 

 is attracting if 
ଵ

௞
< 𝑎 <

ିଵ

௞
  while 𝑘 < 0 𝑎𝑛𝑑  0 < 𝑟 < 2. 

 is attracting if 
ିଵ

௞
< 𝑎 <

ଵ

௞
 while 𝑘 > 0 𝑎𝑛𝑑0 < 𝑟 < 2. 

 is repelling if 𝑎 <
ଵ

௞
 𝑜𝑟 𝑎 >

ିଵ

௞
 while 𝑘 < 0 𝑎𝑛𝑑 𝑟 < 0 𝑜𝑟 𝑟 > 2. 

 is repelling if 𝑎 <
ିଵ

௞
 𝑜𝑟 𝑎 >

ଵ

௞
  while 𝑘 > 0 𝑎𝑛𝑑 𝑟 < 0 𝑜𝑟 𝑟 > 2. 

 is a saddle point if =
±ଵ

௞
 𝑎𝑛𝑑 𝑟 = 0 𝑜𝑟 𝑟 = 2. 

Here demonstrate two examples concentrating about the fixed points (0,0) and 

(𝑘, 0). 
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Example 4.1: Consider 𝑟 = 0.119 > 0, 𝑎 = 0.2 𝑎𝑛𝑑 𝑘 = 14.49, the point 

(0,0) is a repeller and in this case the trajectory near the neighborhood of (0,0) 

with initial value (0.001, 0.005) converges to (𝑘, 0) as shown in Figure 4.1: 

Left. While 𝑟 = 0, 𝑎 = 0.2, 𝑎𝑛𝑑 𝑘 = 14.49, the fixed point (0,0) is a saddle 

point. In this case, the trajectory near the neighborhood of (0,0) with an initial 

value (0.001, 0.005) converges to (0.00099900300093254,0) which is shown 

in Figure 4.1: Right. The trajectory plots of 500 iterations with initial value 

(0.001, 0.005) have been figured in Fig 4.1. 

  

  
Fig 4. 1: Trajectory plots: Left Repeller; Right: Saddle point. x-axis and y-axis 

denote the number of iterations and trajectories respectively. 
 

Example 4.2: Considering 𝑟 = 1.55 ∈ (0,2), 𝑎 = 0.05, 𝑎𝑛𝑑 𝑘 = 16, the point 

(𝑘, 0) is attracting and in this case the trajectory near the neighborhood of 

(𝑘, 0) with an initial value (15.799, 0.0011) converges to (𝑘, 0) (Fig 4.2 

(top)). While 𝑟 = 2.55, 𝑎 = 0.05, 𝑎𝑛𝑑 𝑘 = 16, the point (𝑘, 0) is repelling and 

in this case the trajectory near the neighborhood of (𝑘, 0) with an initial value 

(15, 0.001) possessed a period 4 attracting cycle (25.7440, 0), (5.448, 0), 

(29.282,0), (3.526,0) (Fig 4.2 (bottom).  
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Fig 4. 2: Trajectory plots (top: attracting (𝒌, 𝟎); bottom: repeller (𝒌, 𝟎)). 

 

When 𝑟 = 2.2, 𝑎 = 0.05 and 𝑘 = −16, the fixed point (𝑘, 0) is repelling and 

in this case the trajectory near the neighborhood of (𝑘, 0) with initial value                    

(-15.799, 0.0011) possesses a period 2 cycle (-24.0470,0), (-7.9530,0) as shown 

in Fig 4.3 (top). If 𝑟 = 2, 𝑎 = 0.0625, 𝑎𝑛𝑑 𝑘 = −16, the point (𝑘, 0) is a 

saddle point and in this case the trajectory near the neighborhood of (𝑘, 0) with 

initial value (-15.799,0.0011) approaches to the saddle point (Fig 4.3 (bottom)).  
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Fig 4.3: Trajectory plots (top: saddle (𝒌, 𝟎) and bottom: repeller (𝒌, 𝟎)). 
 

We tried to search the space parameters (𝑎, 𝑘, 𝑟) for which the fixed point (0,0) 

is attracting, repelling or saddle. By computer simulation, obtained the 

following space of parameters (Fig.4.4) of three different kinds. Also, obtained 

the space of parameters (𝑎, 𝑘, 𝑟) such that the fixed point (𝑘, 0) is attracting, 

repelling or saddle (Fig.4.5).  
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We shall now find out the parameter space where one of the fixed points is 

attracting (repelling) and the other one is repelling (attracting). The plot is 

given in Fig.4.6.  It was observed that there does not exist any parameter 

(𝑎, 𝑘, 𝑟) such that both the fixed points are either attracting or repelling.  

 

 

 

 

Fig.4.4. Top Left: Attracting (𝟎, 𝟎). Top Right : Repeller (𝟎, 𝟎).                   

Bottom: Saddle (𝟎, 𝟎). Here in 3D coordinate system 𝒙−, 𝒚−, 𝒛 − 𝒂𝒙𝒆𝒔  

denote the parameters 𝒂, 𝒌, 𝒓 respectively.   
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Fig.4.5. Top Left: Attracting (𝒌, 𝟎),  Top right: Repeller (𝒌, 𝟎) and 

bottom: Saddle (𝒌, 𝟎). 

 

Fig.4.6. Left: (𝟎, 𝟎) is repelling and (𝒌, 𝟎) is attracting. Right: (𝟎, 𝟎) is 

attracting and (𝒌, 𝟎) is repelling. 
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The following Table 4.1 lists the set of parameters 𝑎, 𝑘 𝑎𝑛𝑑 𝑟 of the Nicholson-

Bailey mode Eqn. (4. 1) such that the point (0,0),((𝑘, 0)) is attracting but the 

point (𝑘, 0) ((0,0)) is repelling even if we consider the initial conditions in the 

neighborhood of the points (𝑘, 0) ((0,0)). 

Table 4.1: Set of parameters when (𝟎, 𝟎) is attracting (𝒌, 𝟎) is repelling 

and (𝒌, 𝟎) is attracting with (𝟎, 𝟎) repelling. 
 

Parameter (𝑎, 𝑘, 𝑟) Initial value Remark 

(0.03, 11, 0.25) 𝑥଴ = 0.6781, 𝑦଴ = 0.2135 (𝑘, 0) is attracting where 
(0,0)is repelling. 

(12.27,28.45, −7.72) 𝑥଴ = 28.7, 𝑦଴ = 0.02 (0,0) is attracting where 
(𝑘, 0)is repelling. 

(1, 19, 0.59) 𝑥଴ = 0.012, 𝑦଴ = 0.231 (𝑘, 0) is attracting where 
(0,0)is repelling 

(42.33, 27, −48.89) 𝑥଴ = 27.3, 𝑦଴ = 0.02 (0,0) is attracting where 
(𝑘, 0)is repelling 

(0.6, 19, 0.83) 𝑥଴ = 0.0046, 𝑦଴ = 0.7749 (𝑘, 0) is attracting where 
(0,0)is repelling 

 
 

It is noted that when the fixed point (0,0) is attracting then the fixed point 

(𝑘, 0) is not able to attract even if the initial value is chosen around the non-

trivial fixed point (𝑘, 0). This observation is also true for the fixed point (𝑘, 0). 

The fact has been justified through a couple of examples as stated in               

Table 4. 1. This is because of the fact that when |1 − 𝑟| are greater than 1 then 

|𝑟| > 1. It is needless to mention that 𝑎𝑘, 1 − 𝑟 are eigenvalues corresponding 

to (𝑘, 0) and 𝑒௥ and 0 are the eigenvalues of 𝐽(଴,଴) of the system Eqn. (4.1).  
 

So far we did find (0,0) and (𝑘, 0) are fixed points of the system Eqn. (4.1) 

and characterized them. In this regard, one of the most relevant results is stated 

as below.  
 

Theorem 4.2: If (𝑥̅, 𝑦ത) is a fixed point of the Nicholson Bailey system 

Eqn.(4.1) with the parameters (𝑎, 𝑘, 𝑟) then (−𝑥̅, −𝑦ത) is also a fixed point of 

the Nicholson-Bailey system Eqn. (4.1) with the parameters (−𝑎, 𝑟, −𝑘). 

Proof. Since (𝑥̅, 𝑦ത) is a fixed point of the Nicholson-Bailey system Eqn. (4.1) 

with the parameters (𝑎, 𝑘, 𝑟) then we have 
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𝑥̅ = 𝑥̅ ൬𝑒
௥ቀଵି

ഥೣ

ೖ
ቁି௔௬ത൰,     𝑦ത = 𝑥̅(1 − 𝑒ି௔௬ത)   Eqs. (4. 5) 

 

Rewriting Eqs. (4.5) as  

−𝑥̅ = −𝑥̅ ൬𝑒
௥ቀଵି

షഥೣ

షೖ
ቁି(ି௔)(ି௬ത)൰, -𝑦ത = −𝑥̅൫1 − 𝑒ି(ି௔)(ି௬ത)൯       Eqs. (4.6) 

From Eqn. (4.6) it is seen that (−𝑥̅, −𝑦ത) is also a fixed point of the Nicholson-

Bailey system Eqn. (4.1) with the parameters (−𝑎, 𝑟, −𝑘).    

                            

Theorem 4. 3: If (𝑥̅, 𝑦ത) is a fixed point of the Nicholson Bailey system Eqn. 

(4.1) with the parameters (𝑎, 𝑘, 𝑟) then (𝑐𝑥̅, 𝑐𝑦ത) is also a fixed point of the 

Nicholson-Bailey system Eqn. (4.1) with the parameters (
௔

௖
, 𝑟. 𝑐𝑘), where c is 

any real number. 

Proof. Since (𝑥̅, 𝑦ത) is a fixed point of the Nicholson-Bailey system Eqn. (4. 1) 

with the parameters (𝑎, 𝑘, 𝑟) then we have  

𝑥̅ = 𝑥̅ ൬𝑒
௥ቀଵି

ഥೣ

ೖ
ቁି௔௬ത൰, 𝑦ത = 𝑥̅(1 − 𝑒ି௔௬ത)   Eqs. (4.7) 

 

Rewriting Eqs. (4.7) as  

𝑐𝑥̅ = 𝑐𝑥̅ ൬𝑒
௥ቀଵି

೎ഥೣ

೎ೖ
ቁି(

ೌ

೎
)(௖௬ത)൰, c𝑦ത = 𝑐𝑥̅ ቀ1 − 𝑒ି(

ೌ

೎
)(௖௬ത)ቁ        Eqs. (4.8)  

From Eqs. (4.8) it is seen that (𝑐𝑥̅, 𝑐𝑦ത) is also a fixed point of the Nicholson-

Bailey system Eqn. (4.1) with the parameters (
௔

௖
, 𝑟. 𝑐𝑘), where c is any real 

number.         
 

Remark 4. 1. The local asymptotic behavior of the fixed point (𝑐𝑥̅, 𝑐𝑦ത) of the 

Nicholson-Bailey system Eqn. (4. 1) is same as the local asymptotic behavior 

of the fixed point (𝑥̅, 𝑦ത). 
 

We now try to see if there are any other fixed points of Eqn (4. 1). By computer 

simulation, obtained a set of 5000 different fixed points for different sets of 
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system parameters. The plot of those fixed points including the corresponding 

parameters 𝑎, 𝑘 and 𝑟 is given in Fig. 4.7. 
 

It is evident from Fig. 4.7 that the fixed points of system Eqn. (4.1) is 

symmetric about the line 𝑦 = 𝑥 where the parameters 𝑎, 𝑘 and 𝑟 lie in the 

interval (−6,6), (−5 x 10଺, 5 x 10଺)  and (−4,4) respectively. It is observed 

that the parameter 𝑘 is inversely related to parameter 𝑎. From the simulation, 

it is observed that there does not exist any fixed points in the region generated 

by the anti-clockwise rotation of the line 𝑦 = 𝑥 tan 𝜃, where  𝜃 lies in the 

interval ቀ
గ

ସ
,

గ

ଶ
ቁ. 

 

 

Fig.4.7. Plot of fixed points and corresponding parameters (𝒂, 𝒌, 𝒓) of the 

Nicholson-Bailey system Eqn. (𝟒. 𝟏) 
 

4.4 Local asymptotic stability of the scaled Nicholson-Bailey model 
 

The fixed points of the system Eqn (4. 2) are basically a solution of the 

following system.  
 

𝑥̅ = (𝑥̅ + 𝛼) ൬𝑒
௥ቀଵି

(ഥೣశഀ)

ೖ
ቁି௔(௬തାఉ)൰ , 𝑦ത = (𝑥̅ + 𝛼)(1 − 𝑒ି௔(௬തାఉ))  Eqs. (4.9) 

It was obtained that the system Eqn. (4.1) possess two fixed points 

(0,0) 𝑎𝑛𝑑 (𝑘, 0). Further, investigated if there are any parameters 𝑟, 𝑎 𝑎𝑛𝑑 𝑘 

such that (0,0) 𝑎𝑛𝑑 (𝑘, 0) remain fixed points of the scaled system Eqn. (4. 2). 

It is found that if 𝛼 = 0, and 𝛽 is any real number, then (0,0) remains a fixed 

point. Also there are parameters  𝑟, 𝑎 𝑎𝑛𝑑 𝑘 in the scaled system Eqn. (4.2) for 

some 𝛼 and 𝛽 for which the point (𝑘, 0) is a fixed point. 
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If both 𝛼 and 𝛽 are non-zero real numbers, the other possible fixed points are 

(𝛼, 0), (𝛼, 𝛼), (𝛽, 0), (𝛽, 𝛽) and (𝛼, 𝛽) for certain parameters 𝑟, 𝑎 𝑎𝑛𝑑 𝑘. We  

have analogous theorems (Theorem 4.4-4.5) corresponding to                         

(Theorem 4.2-4.3) for scaled dynamical system Eqn. (4.2). 
 

Theorem 4. 4: If (𝑥̅, 𝑦ത) is a fixed point of the Eqn. (4.2) with parameters 

(𝑎, 𝑘, 𝑟) then (−𝑥̅, −𝑦ത) is also a fixed point to the Nicholson-Bailey system 

Eqn. (4.2) with the parameters (−𝑎, 𝑟, −𝑘) with the scaling factor (−𝛼, −𝛽). 

 

Proof: Since (𝑥̅, 𝑦ത) is a fixed point of the Nicholson-Bailey system Eqn. (4.2) 

with the parameters (𝑎, 𝑘, 𝑟) and scaling factor (𝛼, 𝛽), then we have 

𝑥̅ = (𝑥̅ + 𝛼) ൬𝑒
௥ቀଵି

(ഥೣశഀ)

ೖ
ቁି௔(௬തାఉ)൰ , 𝑦ത = (𝑥̅ + 𝛼)(1 − 𝑒ି௔(௬തାఉ))   Eqs. (4.10)                             

Rewriting Eqs (4.10) as  

ቐ
− 𝑥̅ = ൫−𝑥̅ + (−𝛼)൯ ቆ𝑒

𝑟൬1−
൫−𝑥̅+(−𝛼)൯

𝑘
൰−𝑎൫−𝑦̅+(−𝛽)൯

ቇ

− 𝑦̅ = (−𝑥̅ + (−𝛼))(1 − 𝑒−𝑎(−𝑦̅+(−𝛽)))

            Eqs. (4.11) 

From Eqs. (4. 11) it is seen that (−𝑥̅, −𝑦ത) is also a fixed point of the Nicholson-

Bailey system Eqn. (4.2) with the parameters (−𝑎, 𝑟, −𝑘) and scaling factor 

(−𝛼, −𝛽).               

Theorem 4. 5: If (𝑥̅, 𝑦ത) is a fixed point of the Nicholson Bailey system Eqn. 

(4.2) with the parameters (𝑎, 𝑘, 𝑟) then (𝑐𝑥̅, 𝑐𝑦ത) is also a fixed point of the 

Nicholson-Bailey system Eqn. (4.2) with the parameters (
௔

௖
, 𝑟. 𝑐𝑘), where c is 

any real number and scaling factor (
ఈ

௖
,

ఉ

௖
). 

Proof: Since (𝑥̅, 𝑦ത) is a fixed point of the Nicholson-Bailey system Eqn. (4.2) 

with the parameters (𝑎, 𝑘, 𝑟) and scaling factor (𝛼, 𝛽), then we have 

𝑥̅ = (𝑥̅ + 𝛼) ൬𝑒
௥ቀଵି

(ഥೣశഀ)

ೖ
ቁି௔(௬തାఉ)൰ , 𝑦ത = (𝑥̅ + 𝛼)(1 − 𝑒ି௔(௬തାఉ))     Eqs. (4.12)                            
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Rewriting Eqs. (4.12) as  

⎩
⎪
⎨

⎪
⎧

𝑐𝑥ത = ൬𝑐𝑥ത + 𝑐 ቀ
𝛼

𝑐
ቁ൰

⎝

⎛𝑒

𝑟ቌ1−
൬𝑐𝑥ത+𝑐ቀ

𝛼

𝑐
ቁ൰

𝑐𝑘
ቍ−(

𝑎

𝑐
)൬𝑐𝑦ത+𝑐ቀ

𝛽

𝑐
ቁ൰

⎠

⎞

𝑐𝑦ത = (𝑐𝑥ത + 𝑐(
𝛼

𝑐
))(1 − 𝑒

−(
𝑎

𝑐
)(𝑐𝑦ത+𝑐(

𝛽

𝑐
))

)

         Eqs. (4. 13) 

 

From Eqs. (4. 13) it is seen that (𝑐𝑥̅, 𝑐𝑦ത) is also a fixed point of the Nicholson-

Bailey system Eqn. (4. 2) with the parameters (
௔

௖
, 𝑟, 𝑐𝑘) and scaling factor 

(
ఈ

௖
,

ఉ

௖
).             

In addition, through a computer simulation, found the set of fixed points which 

is depicted in Fig. 4. 8.  

 

 

Fig.4.8. Plot of fixed points and corresponding parameters (𝒂, 𝒌, 𝒓) and 

the scaling factors (𝜶, 𝜷) of the scaled Nicholson-Bailey system Eqn. (4.2) 
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In the scaled system Eqn. (4.2), the fixed points range over the two dimensional 

plane unlike in the case of the original Nicholson-Bailey system Eqn. (4.1). 

Also, the parameters are considered to be ranged over the plane. Therefore, it 

can be concluded that fixed points set of the Nicholson-Bailey system Eqn. 

(4.1) is a subset of the scaled system Eqn. (4.2) fixed points. 

For the fixed points (𝑥̅, 𝑦ത) of the scaled system Eqn. (4.2), the local stability 

depends on the character of the eigenvalues of the Jacobian at (𝑥̅, 𝑦ത). About 

(𝑥̅, 𝑦ത), the Jacobian is denoted as 𝐽(௫̅,௬ത) given by  
 

𝐽(௫,ഥ ௬ത) =

⎝

⎜
⎛𝑒

௥ቀଵି
௫̅ାఈ

௞
ቁି௔(௬തାఉ)

−
𝑒

௥ቀଵି
௫̅ାఈ

௞
ቁି௔(௬തାఉ)

𝑟(𝑥̅ + 𝛼)

𝑘
1 − 𝑒ି௔(௬തାఉ)

−𝑎𝑒
௥൬ଵି

(௫̅ାఈ)
௞

൰ି௔(௬തାఉ)
(𝑥̅ + 𝛼) 𝑎𝑒ି௔(௬തାఉ)(𝑥̅ + 𝛼)

⎠

⎟
⎞

 

 

The local asymptotic stability of couple of fixed points of Eqn. (4.2) are 

studied. 

4.4.1 Stability of Fixed Point (𝟎, 𝟎) 
 

The fixed point (0,0) exists for a range of parameters a, k, and r. To establish 

the existence of the fixed point (0,0), presented the figure of parameter space 

(𝑎, 𝑟, 𝑘) as well as the scaling factor space (𝛼, 𝛽) in Fig.4. 9. We can notice 

that the point (0,0) is a fixed point only if 𝛼 = 0 and 𝛽 is any real number 

which is evident from Fig 4. 9. 

 

Fig.4.9: Plot of parameter space (𝒂, 𝒌, 𝒓) and scaling factors (𝜶, 𝜷) of the 

Nicholson-Bailey system (4.2) where (0,0) is a fixed point. 
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The eigenvalues of the 𝐽(଴,଴) are  

𝑒ିఈ ቌ𝑎𝛼𝑘 − ඨቆ−𝑎𝛼𝑘 + 𝛼𝑟𝑒
௥ቀଵି

ఈ
௞

ቁ
− 𝑘𝑒

௥൬ቀଵି
ఈ
௞

ቁ൰
ቇ

ଶ

− 4 ൬𝑎𝛼𝑘ଶ𝑒
௔ఉା௥ቀଵି

ఈ
௞

ቁ
− 𝑎𝛼ଶ𝑘𝑟𝑒

௥ቀଵି
ఈ
௞

ቁ
൰

+ 𝛼𝑟 ൬−𝑒
௥ቀଵି

ఈ
௞

ቁ
൰ + 𝑘𝑒

௥ቀଵି
ఈ
௞

ቁ
ቍ / 2𝑘 

and 

𝑒ିఈఉ ቌ𝑎𝛼𝑘 + ඨቆ−𝑎𝛼𝑘 + 𝛼𝑟𝑒
௥ቀଵି

ఈ
௞

ቁ
− 𝑘𝑒

௥൬ቀଵି
ఈ
௞

ቁ൰
ቇ − 4 ൬𝑎𝛼𝑘ଶ𝑒

௔ఉା௥ቀଵି
ఈ
௞

ቁ
− 𝑎𝛼ଶ𝑘𝑟𝑒

௥ቀଵି
ఈ
௞

ቁ
൰

ଶ

+ 𝛼𝑟 ൬−𝑒
௥ቀଵି

ఈ
௞

ቁ
൰ + 𝑘𝑒

௥ቀଵି
ఈ
௞

ቁ
ቍ / 2𝑘 

Here an example was presented with set of parameters where the fixed point 

(0,0) is   attracting. 
 

Example 4. 3: consider 𝛼 = 0 and 𝛽 as non zero scaling factor. The moduli of 

both eigenvalues are less than 1 for a set of values of parameters 𝑟 = 0.5, 𝑎, 𝑘 =

{−236.7, −49}, {−155.1, −183.3}, {69.4, −175.7},  

{−242.7, −18.7}, {26, −72.7}, {245.4,28.7}, {−55.9,36.6}, 

{−108,137.3}, {51.6,61.1}, {−54.7, −49.8} and corresponding scaling factor 

 𝛽: {−180.7, −8.6,9.9, −176.7,152.1,148.4, −214.1, −172.7,124, −38.8} 

respectively.  In this case, the fixed point (0,0) is locally asymptotically stable 

(attracting). It was found that there does not exist any parameter a, k, and r such 

that the fixed point (0,0) is repelling. 

4.4.2 Stability of fixed point (𝜶, 𝟎) 
 

In establishing the existence of the fixed point (𝛼, 0), a computer simulation is 

done and found the space of parameters (𝑎, 𝑟, 𝑘) with 5000 points as well as 

the scaling factors space (𝛼, 𝛽) which is depicted in Fig. 4.10. 
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Fig. 4.10. Plot of parameter space (𝒂, 𝒓, 𝒌) and the scaling factor (𝜶, 𝜷) of 

the scaled system Eqn. (𝟒. 𝟐) where (𝜶, 𝟎) is a fixed point. 

 
The eigenvalues of 𝐽(ఈ,଴) are  

൮𝑒−𝛼𝛽 ቌ−ඨቆ−2𝑎𝛼𝑘 + 2𝛼𝑟𝑒
𝑟ቀ1−

2𝛼

𝑘
ቁ

− 𝑘𝑒
𝑟൬ቀ1−

2𝛼

𝑘
ቁ൰

ቇ

2

− 4 ൬2𝑎𝛼𝑘2𝑒
𝑎𝛽+𝑟ቀ1−

2𝛼

𝑘
ቁ

− 4𝑎𝛼2𝑘𝑟𝑒
𝑟ቀ1−

2𝛼

𝑘
ቁ
൰

+ 2𝛼𝑟 ൬−𝑒
𝑟ቀ1−

2𝛼

𝑘
ቁ
൰ + 𝑘𝑒

௥ቀଵି
ଶఈ
௞

ቁ
+ 2𝑎𝛼𝑘ቍ൲ / 2𝑘 

and 

ቌ𝑒−𝛼𝛽 ቌඨቆ−2𝑎𝛼𝑘 + 2𝛼𝑟𝑒
𝑟ቀ1−

2𝛼

𝑘
ቁ

− 𝑘𝑒
𝑟൬ቀ1−

2𝛼

𝑘
ቁ൰

ቇ

2

− 4 ൬2𝑎𝛼𝑘2𝑒
𝑎𝛽+𝑟ቀ1−

2𝛼

𝑘
ቁ

− 4𝑎𝛼2𝑘𝑟𝑒
𝑟ቀ1−

2𝛼

𝑘
ቁ
൰

+ 2𝛼𝑟 ൬−𝑒
𝑟ቀ1−

2𝛼

𝑘
ቁ
൰ + 𝑘𝑒

௥ቀଵି
ଶఈ
௞

ቁ
ቍ + 2𝑎𝛼𝑘ቍ /2𝑘 

Here are two examples of sets of parameters where the fixed point (𝛼, 0) is 

attracting and repelling. 

Example 4. 4: consider 𝛼 = 3 and 𝛽 = 10 as scaling factors for the scaled 

system (4.2). The moduli of both eigenvalues are less than 1 for a set of values 

of 𝑟 = 2.5, 𝑎, 𝑘 = {110.5,100.5}, {43.7, −149}, {91.1, −7.2}, {69.4, −175.7} 

, {42.3, −57.5}, {195.5,45.1}, {144.3,34}, {131.8,135}, {213.9, −64.5}. 
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Here, the fixed point (3,0) is locally asymptotically stable (attracting). 

Example 4. 5: consider 𝛼 = 5 and 𝛽 = 8 as scaling factors for the scaled 

system Eqn. (4.2). The moduli of both eigenvalues are greater than 1 for a set 

of values of 𝑟 = 2.5, 𝑎, 𝑘 = {−157.4, −38.9}, {−227, −215.7}, 

{−158, −207.5}, {−193.6,104.4}, {−86.4, −159.2}, {−234.4,202}, 

{−108,137.3}, {−179.8, −93.7}, {−110.9, −98.4}, {−155.1, −183.3}. 

Here, the fixed point (5,0) is repelling. 

4.4.3 Stability of fixed point (𝟎, 𝜶) 
 

In establishing the existence of the fixed point (0, 𝛼), a computer simulation is 

done and found the space of parameters (𝑎, 𝑟, 𝑘) with 5000 points as well as 

the scaling factors space (𝛼, 𝛽) which is depicted in Fig. 4.11. 

 

Fig.4.11. Plot of parameter space (𝒂, 𝒓, 𝒌) and the scaling factor (𝜶, 𝜷) of 

the scaled system Eqn. (𝟒. 𝟐) where (𝟎, 𝜶) is a fixed point. 
 

The eigenvalues of 𝐽(଴,ఈ) are  
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and 
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ቌ𝑒−(𝛼+𝛽) ቌඨቆ−𝑎𝛼𝑘 + 𝛼𝑟𝑒
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Here are two examples of sets of parameters where the fixed point (0, 𝛼) is 

attracting and repelling. 
 

Example 4.6: The moduli of both eigenvalues of 𝐽(଴,ఈ) are less than 1 for a set 

of values 𝑟 = 2.5, 𝑎, 𝑘 = {−110.9, −98.4}, {−157.4, −38.9}, 

{−136.8, 80.6}, {200.6, −111.7}, {26, −72.7}, {−105.5, 218.5},  

 {−56.6, 72.9}, {−242.7, −18.7},{213.9, −64.5}, {69.4, −175.7} and its 

corresponding scaling factors (𝛼, 𝛽) as  {−2.1, −124.2}, {−188.7, −86.7}, 

{−2.1, −124.2}, {−188.7, −86.7}, {-167.7, 117.2}, {173.3,28.4}, 

{152.1,243.2}, {7.4, −120.5}, {21.9, −118.1}, {−176.7, 46}, {53.4, −9.3}, 

{9.9,142.0} respectively.  
  

Here, the fixed point (0, 𝛼) is locally asymptotically stable (attracting). 

Example 4.7: The moduli of both eigenvalues of 𝐽(଴,ఈ) are greater than 1 for a 

set of values 𝑟 = 5.5, 𝑎, 𝑘 = {−167.2, −209.6}, {−193.7,103}, 

{−179.8, −93.7}, {131.8,135}, {1.1, −148.8}, {−119.4, −38.4}, 

{−87.9, −158.2}, {−234.4,202},{194.5, 45.1}, {42.3, −57.5} and its 

corresponding scaling factors (𝛼, 𝛽) as  {142.6,191}, {204.2,198.5},{97.1, 

217.6}, {−120.8,30}, {−214.2, −75.1}, {−76.7,87.6}, {107.2, −32.4}, 

{45.8,241.1}, {26, −169.7}, {−77.4, −203.3} respectively.  

Here, the fixed point (0, 𝛼) is repelling. 
 

4.4.4 Stability of fixed point (𝜶, 𝜶) 
 

While proving the existence of the fixed point (𝛼, 𝛼), a computer simulation is 

done and found the space of parameters (𝑎, 𝑟, 𝑘) with 5000 points as well as 

the scaling factors space (𝛼, 𝛽) which is depicted in Fig. 4.12. 



88 
 

 

Fig.4.12. Plot of parameter space (𝒂, 𝒓, 𝒌) and the scaling factor (𝜶, 𝜷) of 

the scaled system Eqn. (𝟒. 𝟐) where (𝜶, 𝜶) is a fixed point. 

 
The eigenvalues of the 𝐽(ఈ,ఈ) are 
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Here are two examples of sets of parameters where the fixed point (𝛼, 𝛼) is 

attracting and repelling. 

 

Example 4.8: The moduli of both eigenvalues of 𝐽(ఈ,ఈ) are less than 1 for a set 

of values 𝑟 = 6.5, 𝑎, 𝑘 = {−55.9,36.6}, {−236.7, −49}, 

{91.1, −7.2}, {74.6, −179.1}, {245.4,28.7}, {110.5,100.5}, {204, −116.7}, 
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{−155.1, −183.3}, {−247.9, −25.8}, {−105.5, 218.5} and its corresponding 

scaling factors (𝛼, 𝛽) as  {−44.9, −32.4}, {−220,38.6}, {183.5,81.8}, 

{−7.4,84}, {86.3, −8.4}, {200.3,212.3}, {152, −63.3}, {−75.3, −63}, 

{−1.1, −0.4}, {−120.5, −84.5} respectively.  
 

Here, the fixed point ( 𝛼, 𝛼) is locally asymptotically stable (attracting). 

Example 4.9: The moduli of both eigenvalues of 𝐽(ఈ,ఈ) are greater than 1 for a 

set of values 𝑟 = 6.5, 𝑎, 𝑘 = {−167.2, −209.6}, {−193.7,103}, 

{−179.8, −93.7}, {131.8,135}, {1.1, −148.8}, {−119.4, −38.4}, 

{−87.9, −158.2}, {−234.4,202},{194.5, 45.1}, {42.3, −57.5} and its 

corresponding scaling factors (𝛼, 𝛽) as {142.6,191}, {204.2,198.5}, 

{97.1, 217.6},{−120.8,30}, {−214.2, −75.1}, {−76.7,87.6}, {107.2, −32.4}, 

{45.8,241.1}, {26, −169.7}, {−77.4, −203.3} respectively.  
 

Here, the fixed point (𝛼, 𝛼) is repelling. 

Conjecture 4. 1: If 𝛽 = −𝛼, then (𝛼, 𝛼) is a  fixed point of the scaled 

Nicholson-Bailey system Eqn. (4.2) where 𝛼 and 𝛽 are arbitrary scaling 

factors.  
  

4.4.5 Stability of fixed point (𝜶, 𝜷) 
 

In establishing the existence of the fixed point (𝛼, 𝛽), a computer simulation is 

done and found the space of parameters (𝑎, 𝑟, 𝑘) with 5000 points as well as 

the scaling factors space (𝛼, 𝛽) which is depeicted in Fig. 4.13. 

 

Fig.4.13. Plot of parameter space (𝒂, 𝒓, 𝒌) and the scaling factor (𝜶, 𝜷) of 

the scaled system Eqn. (𝟒. 𝟐) where (𝜶, 𝜷) is a fixed point. 
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The eigenvalues of 𝐽(ఈ,ఉ) are  
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Here are two examples of sets of parameters where the fixed point (𝛼, 𝛽) is 

attracting and repelling. 
 

Example 4.10: The moduli of both the eigenvalues of 𝐽(ఈ,ఉ) are less than 1 for 

a set of values 𝑟 = 6.5, 𝑎, 𝑘 = {−105.5,218.5}, {−157.4, −38.9}, 

{−110.9, −98.4}, {77.4,188}, {−56.6,72.9}, {−55.9,36.6}, {−56.6,72.9}, 

{−55.9,36.6}, {150.4,65.5}, {69.4, −175.7}, 

{−247.9, −25.8}, {204, −116.7} 

and its corresponding scaling factors (𝛼, 𝛽) as  {7.4, −120.5}, 

{−188.7, −86.7}, {−2.1, −124.2}, {−116,181.9}, {21.9, −118.1}, 

 {−214.1, −44.9}, {−77.9,117.7}, {9.9,142}, {236.9, −1.1}, {−120.1,152} 

respectively.  
 

Here, the fixed point (𝛼, 𝛽) is locally asymptotically stable (attracting). 

Example 4.11: The moduli of both eigenvalues of the Jacobian 𝐽(ఈ,ఉ) are 

greater than 1 for a set of values 𝑟 = 6.5 𝑎, 𝑘 =

{−167.2, −209.6}, {−193.7,103}, {−179.8, −93.7}, {131.8,135}, 
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{1.1, −148.8}, {−119.4, −38.4}, {−87.9, −158.2}, {−234.4,202},

{194.5, 45.1}, {42.3, −57.5} and its corresponding scaling factors (𝛼, 𝛽) as  

{142.6,191}, {204.2,198.5},{97.1,217.6},{−120.8,30}, {−214.2, −75.1}, 

{−76.7,87.6}, {107.2, −32.4}, {45.8,241.1}, {26, −169.7}, {−77.4, −203.3} 

respectively.  Here, the fixed point (𝛼, 𝛽) is repelling.  
 

From Fig.4.13, the following conjecture can be claimed. 
 

Conjecture 4.2: The fixed point (𝛼, 𝛽) of the scaled Nicholson-Bailey system 

Eqn. (4.2) where 𝛼 and 𝛽 are arbitrary scaling factors is symmetric about the 

line 𝛽 = 𝛼 in the 𝛼𝛽 plane. 
  

In a similar way, the local asymptotic stability of the other fixed points can be 

comprehended. 

4.5 Periodic Solutions 
 

A solution {𝑥௡, 𝑦௡}௡  of a two dimensional dynamical system is said to be 

periodic of period 𝑡 if (𝑥௡ା௧, 𝑦௡ା௧) =(𝑥௡, 𝑦௡) for any given initial conditions. 

A solution {𝑥௡, 𝑦௡}௡ is periodic with a prime period 𝑝 , provided 𝑝 is the 

smallest positive integer having this property [29]. 
 

A solution {𝑥௡, 𝑦௡}௡ of a two dimensional dynamical system is said to be quasi-

periodic of period 𝑡 if (𝑥௡ା௧, 𝑦௡ା௧) ≅ (𝑥௡, 𝑦௡) for the given initial conditions.  

In this study, computer simulation was conducted and obtained a set of periodic 

solution for system Eqn. (4.1). Further, compared the same with system Eqn. 

(4.2). Figures Fig. 4.14.1-Fig. 4.14.5 and Tables 4.2 depicts the respective 

results.  
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Fig.4.14.1. Periodic solutions of Nicholson – Bailey model Eqn. (4.1) for 

(𝒂, 𝒌, 𝒓) = (𝟎. 𝟓𝟒, 𝟏𝟏. 𝟓𝟓, 𝟏. 𝟖) and initial values (𝒙, 𝒚) = (𝟏𝟖, 𝟐) with 

period 8. 

 

Fig.4.14.2. Periodic solutions of Nicholson – Bailey model Eqn. (4.1) for 

(𝒂, 𝒌, 𝒓) = (𝟑𝟐. 𝟕𝟐, 𝟐𝟏. 𝟏𝟒, 𝟐. 𝟔𝟗) and initial values (𝒙, 𝒚) = (𝟕. 𝟖, 𝟑. 𝟐) 

with period 16. 

 

Fig.4.14.3. Periodic solutions of Nicholson – Bailey model Eqn. (4.1) for 

(𝒂, 𝒌, 𝒓) = (𝟎. 𝟒𝟒, 𝟔. 𝟖𝟗, 𝟐. 𝟕𝟏) and initial values (𝒙, 𝒚) = (𝟏𝟎. 𝟓, 𝟒𝟔) with 

period 12. 
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Fig.4.14.4. Periodic solutions of Nicholson – Bailey model Eqn. (4.1) for 

(𝒂, 𝒌, 𝒓) = (𝟏𝟕. 𝟕𝟓, −𝟖𝟓. 𝟖𝟏, 𝟑. 𝟐) and initial values (𝒙, 𝒚) = (−𝟒, 𝟐𝟕) with 

period 35. 

 

 

 

Fig.4.14.5. Periodic solutions of Nicholson – Bailey model Eqn. (4.1) for 

(𝒂, 𝒌, 𝒓) = (−𝟐. 𝟖𝟐, 𝟏𝟑. 𝟖𝟐, 𝟐. 𝟔𝟏) and initial values (𝒙, 𝒚) = (𝟕, −𝟑𝟕) with 

period 71. 
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A set of periodic trajectories (with high periods) of system Eqn. (4.1) were 

found. Corresponding to these parameters and initial values, the study 

investigated the scaled system Eqn. (4.2) and found a few set of scaling factors 

𝛼 and 𝛽 for which periodic solutions are achieved. In most of the cases, with 

different sets of parameters and different scaling factors, either trajectory 

converges or diverges. It is noted that there are trajectories which either 

converge or diverge even though the scaling factors are chosen very close to 

zero are tabulated in Table 4.2. 

 

Table 4.2: Solutions of scaled Nicholson-Bailey model Eqn. (4.2) 

corresponding to parameters and initial values as stated in Fig. 4.14.1-

Fig. 4.14.5 for the Nicholson-Bailey model Eqn. (4.1). 

 

  

4.6 Bifurcation Analysis 
 

The behavior of the dynamical system changes drastically with the change of 

system parameters. The changes are not only quantitative such as the changes 

in the location of a fixed points, but also qualitative. Points can be created or 

destroyed, there may be change in their stability, and the system behavior can 

change from stationary or periodic to chaotic. It is the qualitative changes in 
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the system dynamics that are quite pertinent for investigation in dynamical 

systems[40].  

Here, performed bifurcation analysis on the Nicholson-Bailey models Eqn. 

(4.1) and the scaled Nicholson-Bailey model Eqn. (4.2).  

Fixing 𝑎 = 0.2, 𝑘 = 22.47, 𝑎𝑛𝑑 𝑟 as the parameter for the bifurcation analysis, 

which is varying over the interval [−10,10], the following bifurcation plot in 

Fig. 4.15 is plotted by displaying the last 250 points of the simulated set of 

1000 points for 200 distinct 𝑟 values over the specified interval.  

 

Fig.4. 15. Bifurcation diagram of the parameter r for the Nicholson-

Bailey model. 

It is seen that in the Eqn. (4.1), when the parameter r lies in the interval (2,6.75), 

then the fixed points became unstable having different kinds of behaviors 

(periodic/chaotic) [41]. In the  scaled system Eqn. (4. 2), for the scaling factors  

(𝛼, 𝛽)  =    (0,20), (1,0), (1,1), (−1, −1),                                                                                             

 (−1, −2), (1,20), (5,20), (12,20), 𝑎𝑛𝑑 (15,20), the fixed points are unstable 

whenever the parameter r belongs to the interval (5,12), (4,10), (3,10), (2,4) etc. 
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It shows that the parameter r is quite sensitive to the scaling factors which is 

showing in the following Fig. 4.16.1-Fig. 4.16.3. None of these diagrams is 

similar to others. 

 

 

 

Fig. 4. 16.1 Bifurcation diagram for different scaling factors 

(𝜶, 𝜷)  =  (𝟎, 𝟐𝟎), (𝟏, 𝟎), (𝟏, 𝟏) respectively for the scaled Nicholson Bailey 
model. 
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Fig. 4. 16.2 Bifurcation diagram for different scaling factors 

(𝜶, 𝜷)  =  (−𝟏, −𝟏), (−𝟏, −𝟐), (𝟏, 𝟐𝟎) respectively for the scaled 
Nicholson Bailey model. 
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Fig. 4. 16.3 Bifurcation diagram for different scaling factors 

(𝜶, 𝜷)  =  (𝟓, 𝟐𝟎), (𝟏𝟐, 𝟐𝟎), (𝟏𝟓, 𝟐𝟎) respectively for the scaled Nicholson 
Bailey model. 

4.7 Chaotic Solutions 
 

The work explores the existence of chaotic solution of the dynamical system 

Eqn. (4.1) and its scaled model Eqn. (4.2). Computationally, first some chaotic 

solutions of the Nicholson-Bailey model Eqn. (4.1) were obtained and then 

explored the trajectory behavior of the scaled model Eqn. (4.2) corresponding 

to the parameters specified in each of the cases as shown in the Figures                      

Fig. 4.17.1 – Fig. 4.17.5.  
 
 

In doing so, in each case, we keep all the parameters fixed including the initial 

values to see what happens to the trajectory behavior while the scaling factors 



99 
 

𝛼 and 𝛽 are changed. The detail results are adumbrated in Figures                        

Fig. 4.18.1 – Fig. 4.18.4. The largest Lyapunov exponent is calculated for all 

such situations of the dynamical system Eqn. (4.1) numerically to ensure the 

trajectories are indeed chaotic [102]. 
 

 

It is detected that the sensitivity of chaotic behavior of trajectories does not 

depend on the initial values, but rather depends on the scaling factors. It is seen 

in the scaled model that the trajectories are behaving differently (converging, 

diverging) for those set of parameters for which the Nicholson-Bailey model 

Eqn. (4.1) possessed chaotic solutions.  
 

 

The chaotic behavior of trajectories is ensured by computing the largest 

Lyapunov exponent which is shown in Fig. 4.17.1 – Fig 4.17.5 and                         

Fig. 4.18.1-Fig. 4.18.4.    

 

 

Fig. 4. 17.1 The trajectory of chaotic solution for the Nicholson-Bailey 
model Eqn (4.1) for the parameter values (𝒓, 𝒂, 𝒌) = (𝟐. 𝟔, 𝟐. 𝟕, 𝟐) and 
initial values 𝒙 = 𝟏. 𝟒𝟖, 𝒚 = 𝟎. 𝟕. 
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Fig. 4. 17.2 The trajectory of chaotic solution for the Nicholson-Bailey 
model Eqn (4.1) for the parameter values (𝒓, 𝒂, 𝒌) = (𝟐. 𝟔, 𝟑. 𝟒, 𝟑. 𝟖) and 
initial values 𝒙 = 𝟎. 𝟑, 𝒚 = 𝟎. 𝟓. 

 

Fig. 4. 17.3 The trajectory of chaotic solution for the Nicholson-Bailey 
model Eqn (4.1) for the parameter values (𝒓, 𝒂, 𝒌) = (𝟐. 𝟖, 𝟏. 𝟓, 𝟏) and 
initial values 𝒙 = 𝟎. 𝟔𝟗𝟒𝟖, 𝒚 = 𝟎. 𝟑𝟏𝟕𝟏. 
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Fig. 4. 17.4 The trajectory of chaotic solution for the Nicholson-Bailey 
model Eqn (4.1) for the parameter values (𝒓, 𝒂, 𝒌) = (𝟒. 𝟒, 𝟓. 𝟏, 𝟑. 𝟔) and 
initial values 𝒙 = 𝟎. 𝟏𝟒𝟓𝟓, 𝒚 = 𝟎. 𝟏𝟑𝟔𝟏. 

 

Fig. 4. 17.5 The trajectory of chaotic solution for the Nicholson-Bailey 

model Eqn (4.1) for the parameter values (𝒓, 𝒂, 𝒌) = (𝟓. 𝟐, 𝟑. 𝟔, 𝟐. 𝟐) and 

initial values 𝒙 = 𝟎. 𝟐𝟑𝟗𝟗, 𝒚 = 𝟎. 𝟏𝟐𝟑𝟑. 
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Fig. 4.18.1. Solutions of the scaled Nicholson-Bailey model Eqn. (4.2) 

corresponding to (𝒓, 𝒂, 𝒌, 𝒙, 𝒚) = (𝟐. 𝟔, 𝟐. 𝟕, 𝟐, 𝟏. 𝟒𝟖, 𝟎. 𝟕) of the Nicholson-

Bailey model Eqn. (4.1). 
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Fig. 4.18.2. Solutions of the scaled Nicholson-Bailey model Eqn. (4.2) 

corresponding to (𝒓, 𝒂, 𝒌, 𝒙, 𝒚) = (𝟐. 𝟔, 𝟑. 𝟒, 𝟑. 𝟖, 𝟎. 𝟑, 𝟎. 𝟓) of the 

Nicholson-Bailey model Eqn. (4.1). 
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Fig. 4.18.3. Solutions of the scaled Nicholson-Bailey model Eqn. (4.2) 

corresponding to (𝒓, 𝒂, 𝒌, 𝒙, 𝒚) = (𝟐. 𝟖, 𝟏. 𝟓, 𝟏, 𝟎. 𝟔𝟗𝟒𝟖, 𝟎. 𝟑𝟏𝟕𝟏) of the 

Nicholson-Bailey model Eqn. (4.1). 
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Fig. 4.18.4. Solutions of the scaled Nicholson-Bailey model Eqn. (4.2) 

corresponding to (𝒓, 𝒂, 𝒌, 𝒙, 𝒚) = (𝟒. 𝟒, 𝟓. 𝟏, 𝟑. 𝟔, 𝟎. 𝟏𝟒𝟓𝟓, 𝟎. 𝟏𝟑𝟔𝟏) of the 

Nicholson-Bailey model Eqn. (4.1). 
 

4.8 Nicholson-Bailey Model with Uniformly Distributed Noise 
 

None of the models is perfect. In fact, most of the models are noisy. A 

Nicholson-Bailey model is created with with noise, taken as a random number 

in (0,1) interval following a uniform distribution. Therefore the Nicholson-

Bailey model with uniform noise (𝑣ଵ, 𝑣ଶ) ∈ (0,1) X (0,1)  becomes the 

following system: 

൝
𝑥௡ାଵ = 𝑥௡ ቀ𝑒

௥ቀଵି
ೣ೙
ೖ

ቁି௔௬೙ቁ + 𝑣ଵ

𝑦௡ାଵ = 𝑥௡(1 − 𝑒ି௬೙)  +  𝑣ଶ

        Eqn. (4.14) 
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4.8.1 Local stability of fixed points 
 

The points (0,0) and (𝑘, 0) are no longer fixed points of this system                    

Eqn. (4.14). It is trivial to observe that the fixed points (0,0) and (𝑘, 0) can be 

obtained only when there is no noise.  
 

Theorem 4.6. The dynamical system Eqn. (4.14) possesses a fixed point 

(0, 𝑣ଶ) if and only if 𝑣ଵ = 0.  
 

Proof. It is trivial if (0, 𝑣ଶ) is a fixed point of the system Eqn. (4.14) then when 

𝑥 = 0 and 𝑦 = 𝑣ଶ we have 0 = 𝑣ଵ and 𝑣ଶ = 𝑣ଶ.    Eqn. (4.15)   

Hence the point (0, 𝑣ଶ) is a fixed point if and only if 𝑣ଵ = 0 follows from the 

Eqn. (4.15). 
 

In a similar manner, it can be proved that (0, 𝑣ଵ) is a fixed point to the system 

Eqn.(4.14) if 𝑣ଵ = 𝑣ଶ.  
 

Clearly, the fixed points of Nicholson-Bailey system with noise is effected by 

the noise (𝑣ଵ, 𝑣ଶ). Here a few examples of the fixed points were listed which 

are functions of the noise (𝑣ଵ, 𝑣ଶ) including the corresponding parameters.  
 

The following Table 4.3 shows that there are fixed points which are functions 

of the uniformly distributed noise  (𝑣ଵ, 𝑣ଶ) as well as there are fixed points 

which are not explicitly functionally related to the noise (𝑣ଵ, 𝑣ଶ).  
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Table 4.3. Set of parameters 𝒂, 𝒌, 𝒓 with uniformly distributed noise 

(𝒗𝟏, 𝒗𝟐) of the noisy model Eqn. (𝟒. 𝟏𝟒) for which different fixed points are 

achieved. 
 

 
 

4.8.2 Computational Bifurcation Analysis 
 

Here the local bifurcation analysis of the fixed points of Nicholson-Bailey 

model with uniformly distributed noise Eqn. (4.14) was presented.  

Fixing 𝑎 = 0.2, 𝑘 = 22.47 and 𝑟, as the parameter of the bifurcation analysis, 

which is varying over the interval [−10, 10], a bifurcation plot is plotted by 

displaying the last 250 points of the simulated set of 1000 points for 200 distinct 

𝑟 values over the specified interval.    
 

The qualitative behavior of the dynamics of the noisy model Eqn. (4.14) gets 

changed due to one of the control parameters 𝑟 drastically, as seen in the 

bifurcation diagrams in Fig. 4.19. For a different choice of noises, the fixed 

points are becoming unstable (either periodic/chaotic) as r changes over the 

interval (4,10) whereas in the original system Eqn. (4.1) the instability of the 

fixed points was restricted to the interval (2,6.75). 
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Fig. 4. 19. Bifurcation diagram for different noises for the Nicholson-Bailey model 

with uniformly distributed noise over (𝟎, 𝟏). 
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4.8.3 Periodic Solutions 
 

In this section, the investigation into the existence of any periodic solution of 

the model with uniformly distributed noise Eqn. (4.14) was presented. First, we 

shall compare the solution of the noisy model Eqn. (4.14) with those set of 

parameters for which the Nicholson-Bailey model possesses periodic solutions 

as stared in Fig. 4.14.1-4.14.5.  Further, computationally discovered a few set 

of periodic solutions of the system Eqn. (4.14), which are shown in the figures 

Fig. 4.20.1 – Fig. 4.20.4. There are examples of parameters as shown in                 

Fig. 4.19.1 – Fig. 4.19.4 for which the noisy model does not have any periodic 

solution whereas the original Nicholson-Bailey model possessed periodic 

solution. In such cases, the solution of the noisy   model Eqn. (4.14) is either 

convergent or divergent. One set of parameters was obtained for which the 

Nicholson-Bailey model has periodic solution, as shown in Fig. 4.19.1 whereas 

model Eqn. (4.14) has periodic solutions for three different set of noises.   Also 

the study searches for parameters with different noises for which the system 

Eqn. (4.14) possessed periodic solutions of different periods viz. 3, 4 and 6 as 

depicted in the figures Fig. 4.20.1 – Fig. 4.20.4. 
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Fig. 4.19.1. Solution of Nicholson-Bailey model with uniformly distributed 

noise Eqn. (𝟒. 𝟏𝟒) corresponding to the (𝒓, 𝒂, 𝒌, 𝒙, 𝒚) =

(𝟏. 𝟖, 𝟎. 𝟓𝟒, 𝟏𝟏. 𝟓𝟓, 𝟏𝟖, 𝟐) of the Nicholson-Bailey model Eqn. (𝟒. 𝟏). 
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Fig. 4.19.2. Solution of Nicholson-Bailey model with uniformly distributed 

noise Eqn. (𝟒. 𝟏𝟒) corresponding to the (𝒓, 𝒂, 𝒌, 𝒙, 𝒚) =

(𝟐. 𝟔𝟗, 𝟑𝟐. 𝟕𝟐, 𝟐𝟏. 𝟏𝟒, 𝟕. 𝟖, 𝟑. 𝟐) of the Nicholson-Bailey model Eqn. (𝟒. 𝟏). 
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Fig. 4.19.3. Solution of Nicholson-Bailey model with uniformly distributed 

noise Eqn. (𝟒. 𝟏𝟒) corresponding to the (𝒓, 𝒂, 𝒌, 𝒙, 𝒚) =

(𝟐. 𝟕𝟏, 𝟎. 𝟒𝟒, 𝟔. 𝟖𝟗, 𝟏𝟎. 𝟓, 𝟒𝟔) of the Nicholson-Bailey model Eqn. (𝟒. 𝟏). 
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Fig. 4.19.4. Solution of Nicholson-Bailey model with uniformly distributed 

noise Eqn. (𝟒. 𝟏𝟒) corresponding to the (𝒓, 𝒂, 𝒌, 𝒙, 𝒚) =

(𝟐. 𝟕𝟏, 𝟎. 𝟒𝟒, 𝟔. 𝟖𝟗, 𝟏𝟎. 𝟓, 𝟒𝟔) of the Nicholson-Bailey model Eqn. (𝟒. 𝟏). 
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Fig. 4.20.1. Periodic solution of the Nicholson-Bailey model Eqn. (𝟒. 𝟏𝟒) 

with uniformly distributed noise corresponding to the                                      

(𝒓, 𝒂, 𝒌) = (𝟕𝟐, 𝟓, 𝟒𝟐).   
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Fig. 4.20.2. Periodic solution of the Nicholson-Bailey model Eqn. (𝟒. 𝟏𝟒) 

with uniformly distributed noise corresponding to the                                      

(𝒓, 𝒂, 𝒌) = (𝟕𝟔, 𝟔𝟕, 𝟑𝟐).   
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Fig. 4.20.3. Periodic solution of the Nicholson-Bailey model Eqn. (𝟒. 𝟏𝟒) 

with uniformly distributed noise corresponding to the                                      

(𝒓, 𝒂, 𝒌) = (𝟏𝟒, 𝟏𝟔, 𝟒𝟎).   
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Fig. 4.20.4. Periodic solution of the Nicholson-Bailey model Eqn. (𝟒. 𝟏𝟒) 

with uniformly distributed noise corresponding to the                                      

(𝒓, 𝒂, 𝒌) = (𝟏. 𝟕𝟖𝟑𝟐𝟖, 𝟎. 𝟒𝟓𝟕𝟓𝟕𝟒, −𝟔𝟖𝟐).   

 

4.8.4 Chaotic Solutions 
 

Here, the existence of chaotic solutions of the noisy model Eqn. (4.14) 

corresponding to the parameters and initial values in Fig. 4.17.1 – Fig. 4.17.5 is 

discussed.  

The study observes that the chaotic solutions of the noisy model Eqn. (4.14) 

with those sets of parameters and initial values for which the Nicholson-Bailey 



118 
 

model Eqn. (4.14) possessed chaotic solutions, once the noise is very close to 

zero. It is found that with similar parameter and initial values, the trajectory 

behavior got changed due to its noise which is clearly depicted computationally 

in Fig. 4.21.1. – Fig. 4.21.4. 

 

 

Fig. 4.21.1. Solution of Nicholson-Bailey model with Gaussian noise to Eqn. 

(𝟒. 𝟏𝟒) corresponding to the parameters (𝒓, 𝒂, 𝒌, 𝒙, 𝒚) =

(𝟐. 𝟔, 𝟐. 𝟕, 𝟐, 𝟏. 𝟒𝟖, 𝟎. 𝟕) of the Nicholson-Bailey model Eqn. (𝟒. 𝟏). 
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Fig. 4.21.2. Solution of Nicholson-Bailey model with Gaussian noise to Eqn. 

(𝟒. 𝟏𝟒) corresponding to the parameters (𝒓, 𝒂, 𝒌, 𝒙, 𝒚) =

(𝟐. 𝟔, 𝟐. 𝟕, 𝟐, 𝟏. 𝟒𝟖, 𝟎. 𝟕) of the Nicholson-Bailey model Eqn. (𝟒. 𝟏). 
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Fig. 4.21.3. Solution of Nicholson-Bailey model with Gaussian noise to Eqn. 

(𝟒. 𝟏𝟒) corresponding to the parameters (𝒓, 𝒂, 𝒌, 𝒙, 𝒚) =

(𝟐. 𝟖, 𝟏. 𝟓, 𝟏, 𝟎. 𝟔𝟗𝟒𝟖, 𝟎. 𝟑𝟏𝟕𝟏) of the Nicholson-Bailey model Eqn. (𝟒. 𝟏). 
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Fig. 4.21.4. Solution of Nicholson-Bailey model with Gaussian noise to Eqn. 

(𝟒. 𝟏𝟒) corresponding to the parameters (𝒓, 𝒂, 𝒌, 𝒙, 𝒚) =

(𝟒. 𝟒, 𝟓. 𝟏, 𝟑. 𝟔, 𝟎. 𝟏𝟒𝟓𝟓, 𝟎. 𝟏𝟑𝟔𝟏) of the Nicholson-Bailey model Eqn. (𝟒. 𝟏). 
 

4.9 Conclusion  
 

The dynamics of the classical Nicholson-Bailey system along with its scaled 

and noisy models were explored from the very mathematical abstraction, which 

might be applicable in understanding extended futuristic biological host 

parasitoid models. Over extending the domain of parameters to the entire real 

line from positive real numbers, the bilateral symmetry in dynamics (fixed 

points), parametric characteristics and scaling factors including several 

interesting results on periodicity and chaotic solutions of the models are studied. 
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CHAPTER 5.  ROSENZWEIG-MACARTHUR 

PREDATOR-PREY MODELS 
 

5.1 Introduction 
 

 

In ecological dynamics, Rosenzweig-Macarthur predator – prey model is well 

studied since 1963 where all the parameters are considered as positive real 

numbers. In this study, by considering the parameters as complex numbers, the 

dynamics of the Rosenzweig-Macarthur model was investigated 

computationally. In addition, the model with different functional response from 

predator perspective is also studied and compared with the former one. 
 

Inherent complexity of ecological systems makes them fascinating [103]. In 

these systems, the interactions among two individual species could be 

amazingly complex [104]. Apprehending dynamics of such interactions is 

considerably challenging because of complex behavior. In classical models, the 

dynamics of interacting species is explained by a system of ODEs [58], [105], 

[106]. Indeed, several important theoretical works in ecology presents 

derivations of functional forms that include individual level effects [92]. These 

systems are too complex for mathematical analysis even if the knowledge of 

interactions among species is available in detail and the corresponding 

mathematical expressions are obtained. [107], [108]. 
 

A well-known continuous – time predator-prey Rosenzweig-Macarthur model 

(a little variant) with functional response taken as Holling type II is described 

as following system of equations [27], [28], [109]–[112].  

𝑑𝑥

𝑑𝑡
= 𝑥 ቀ1 −

𝑥

𝑘
ቁ −

𝑚𝑥𝑦

1 + 𝑥
                              Eqn. (5.1) 

𝑑𝑦

𝑑𝑡
= −𝑐𝑦 +

𝑚𝑥𝑦

1 + 𝑥
                                         Eqn. (5.2) 
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where x, k and m are positive real numbers. The variables x is prey population 

density and y is predator population density [106]. Mathematicians are always 

curious to explore what happens if we consider any real parameters instead of 

just positive real numbers. In appreciating such interest, the study considers the 

parameters 𝑐, 𝑘 and 𝑚 as arbitrary real numbers to understand if there is any 

hidden symmetry in discrete-time dynamical system. Consideration of negative 

parameters in the model would possibly loose biological direct implications but 

certainly this mathematical model would be mathematically complex.  
 

The discrete version of the model is given by 

𝑥௧ାଵ = 𝑥௧ + ൬𝑥௧ ቀ1 −
𝑥௧

𝑘
ቁ −

𝑚𝑥௧𝑦௧

1 + 𝑥௧
൰ 𝑑𝑡           Eqn. (5.3) 

𝑦௧ାଵ = 𝑦௧ + ൬−𝑐𝑦௧ +
𝑚𝑥௧𝑦௧

1 + 𝑥௧
൰ 𝑑𝑡                      Eqn.  (5.4) 

where all the parameters 𝑐, 𝑘 and 𝑚 are real numbers and 𝑑𝑡 is the delay term. 

In the above equations Eqn. (5.3) and Eqn. (5.4), the functional response is 

considered as Holling type II from prey-perspective (variable x is associated to 

the functional response). The study hypothesizes another analogue model as 

defined under with functional response as Holling type II from predator 

perspective. The equations are  
 

𝑥௧ାଵ = 𝑥௧ + ൬𝑥௧ ቀ1 −
𝑥௧

𝑘
ቁ −

𝑚𝑥௧𝑦௧

1 + 𝑦௧
൰ 𝑑𝑡           Eqn. (5.5) 

𝑦௧ାଵ = 𝑦௧ + ൬−𝑐𝑦௧ +
𝑚𝑥௧𝑦௧

1 + 𝑦௧
൰ 𝑑𝑡                       Eqn. (5.6) 

 
 

5.2 Computational dynamics of Equations (5.3-5.4) 
 

5.2.1 Local Stability Analysis  
 

This section presents one of the most well-known result in analyzing the local 

asymptotic stability of a fixed point before proceeding to do so for the fixed 

points of the discrete time Rosenzweig-Macarthur model equations                       

Eqn. (5.3-5.4) [113]–[115].   
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Result 5.1: Let (𝑥̅, 𝑦ത) be a fixed point of the system 

𝑥௧ାଵ = 𝑓(𝑥௧, 𝑦௧) 

𝑦௧ାଵ = 𝑓(𝑥௧, 𝑦௧) 
 

Let 𝐴 = ቀ
𝑎ଵଵ 𝑎ଵଶ

𝑎ଶଵ 𝑎ଶଶ
ቁ be the Jacobian at the point (𝑥̅, 𝑦ത) with eigenvalues 𝜆ଵ and 

𝜆ଶ. Then, 

  

 ห𝜆ଵ,ଶห < 1 ⟹  (𝑥̅, 𝑦ത) is locally asymptotically stable or attracting. 

 |𝑇𝑟(𝐴)| < 1 + 𝐷𝑒𝑡(𝐴) < 2, then (𝑥̅, 𝑦ത) is locally asymptotically stable 

or attracting. 

 ห𝜆௝ห > 1 for one 𝑗 = {1,2} ⟹  (𝑥̅, 𝑦ത) is repelling. 

 ห𝜆௝ห = 1 for one 𝑗 = {1,2} ⟹  (𝑥̅, 𝑦ത) is saddle. 

 The fixed points (𝑥̅, 𝑦ത) of the Rosenzweig – Macarthur model Eqs (5.3-

5.4) are solutions of the system of equations 

 𝑥̅ = 𝑥̅ + ቀ𝑥̅ ቀ1 −
௫̅

௞
ቁ −

௠௫̅௬ത

ଵା௫̅
ቁ 𝑑𝑡          Eqn. (5.7) 

 𝑦ത = 𝑦ത + ቀ−𝑐𝑦ത +
௠௫̅௬ത

ଵା௫̅
ቁ 𝑑𝑡                     Eqn. (5.8) 

 

The system of equations (5.7-5.8) give three unique fixed points (𝑘, 0), (0,0), 

and ቀ−
௖

௖ି௠
,

௖(ି௞)ି௖ା௞௠

௞(௖ି௠)మ ቁ. The locally asymptotic stability analysis of the fixed 

points by making the system of equations Eqn. (5.3-5.4) linearized about the 

fixed points is discussed in the following subsections.  
 

Local stability analysis of (𝒌, 𝟎). The linearized system 𝑋௧ାଵ = 𝐽𝑋௧                                                                   

(where 𝑋௧ = [𝑥௧ , 𝑦௧]் 𝑎𝑛𝑑 𝐽 is the Jacobian) is obtained by linearizing the 

model equations Eqn. (5.3-5.4) about the fixed point (𝑘, 0). The Jacobian about 

the (𝑘, 0) is 

𝐽(௞,଴) = ൮
1 − 𝑑𝑡 −

𝑑𝑡𝑘𝑚

𝑘 + 1

0 𝑑𝑡 ൬
𝑘𝑚

𝑘 + 1
− 𝑐൰ + 1

൲ 

For 𝐽(௞,଴), the eigenvalues are 1 − 𝑑𝑡 and 
ି௖ௗ௧௞ି௖ௗ௧ାௗ௧௞௠ା௞

௞ାଵ
. 

The attracting, repelling and saddle conditions for the fixed point (𝑘, 0) are 

given in the following tables Table 5.1-Table 5.3 respectively. 
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Table 5.1. Eigenvalues and corresponding attracting conditions of (𝒌, 𝟎) 

for different delays. 

 
 

 

Table 5.2. Eigenvalues and corresponding repelling conditions of (𝒌, 𝟎) 

for different delays. 
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Table 5.3. Eigenvalues and corresponding saddle conditions of (𝒌, 𝟎) for 

different delays. 

 

 

Here the visualizations three-dimensional subspaces 

𝑆(௔௧௧௥௔௖௧௜௡௚,ௗ௧), 𝑆(௥௘௣௘௟௟௜௡௚,ௗ௧), and 𝑆(௦௔ௗௗ௟௘,ௗ௧) of ℝଷ for different delays 𝑑𝑡, 

which are shown in Fig 5.1.1-Fig.5.1.3 In precise,  𝑆(௔௧௧௥௔௖௧௜௡௚,ௗ௧) denotes the 

space of parameters (𝑐, 𝑘, 𝑚) in ℝଷ for which the fixed point (𝑘, 0) is attracting 

and similarly others follow. 
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Fig 5.1.1 Top Left: 𝑺(𝒂𝒕𝒕𝒓𝒂𝒄𝒕𝒊𝒏𝒈,𝟏), Top Right: 𝑺(𝒂𝒕𝒕𝒓𝒂𝒄𝒕𝒊𝒏𝒈,𝟎.𝟓),                         

Bottom: 𝑺(𝒂𝒕𝒕𝒓𝒂𝒄𝒕𝒊𝒏𝒈,𝟎.𝟎𝟎𝟓). 

 

Fig 5.1.2 Top Left: 𝑺(𝒓𝒆𝒑𝒆𝒍𝒍𝒊𝒏𝒈,𝟏), Top Right: 𝑺(𝒓𝒆𝒑𝒆𝒍𝒍𝒊𝒏𝒈,𝟎.𝟓),                      

Bottom: 𝑺(𝒓𝒆𝒑𝒆𝒍𝒍𝒊𝒏𝒈,𝟎.𝟎𝟎𝟓). 
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Fig 5.1.3 Top Left: 𝑺(𝒔𝒂𝒅𝒅𝒍𝒆,𝟏), Top Right: 𝑺(𝒔𝒂𝒅𝒅𝒍𝒆,𝟎.𝟓),                                           

Bottom: 𝑺(𝒔𝒂𝒅𝒅𝒍𝒆,𝟎.𝟎𝟎𝟓). 
 

The following Table 5.4 demonstrates a couple of examples of parameters 𝑐, 𝑘, 

and 𝑚 for which the fixed point (𝑘, 0) is attracting.  

 

Table 5.4. Examples of parameters where (𝒌, 𝟎) is attracting for different 

delays. 

 

Delay Term 

(𝒅𝒕) 

Parameters 

(𝒄, 𝒌, 𝒎) 

Nature 

1 (0.5219, −0.2843, 2.2381) Attracting to (−0.2843, 0) 

1 (−37, 56, −38.48) Attracting to (56, 0) 

0.5 (3.84127, −10, −0.137931) Attracting to (−10, 0) 

0.5 (321, −82, 315.846) Attracting to (−82, 0) 

0.005 (−106.9, −115.9, 57) Attracting to (−115.9, 0) 

0.005 (31.4, 39, 21) Attracting to (39, 0) 
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The trajectory plot is depicted in the following Fig 5.2.1-Fig 5.2.6 for each of 

the examples given in Table 5.4. 

 

 

 

Figure 5.2.1. Examples of trajectories where the fixed point (𝒌, 𝟎) is 

attracting for (𝒄, 𝒌, 𝒎) =  (𝟎. 𝟓𝟐𝟏𝟗, −𝟎. 𝟐𝟖𝟒𝟑, 𝟐. 𝟐𝟑𝟖𝟏). 

 
 

 

Figure 5.2.2. Examples of trajectories where the fixed point (𝒌, 𝟎) is 

attracting for (𝒄, 𝒌, 𝒎) =  (−𝟑𝟕, 𝟓𝟔, −𝟑𝟖. 𝟒𝟖). 
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Figure 5.2.3. Examples of trajectories where the fixed point (𝒌, 𝟎) is 

attracting for (𝒄, 𝒌, 𝒎) =  (𝟑. 𝟖𝟒𝟏𝟐𝟕, −𝟏𝟎, −𝟎. 𝟏𝟑𝟕𝟗𝟑𝟏). 

 

 

 

Figure 5.2.4. Examples of trajectories where the fixed point (𝒌, 𝟎) is 

attracting for (𝒄, 𝒌, 𝒎) =  (𝟑𝟐𝟏, −𝟖𝟐, 𝟑𝟏𝟓. 𝟖𝟒𝟔). 
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Figure 5.2.5. Examples of trajectories where the fixed point (𝒌, 𝟎) is 

attracting for (𝒄, 𝒌, 𝒎) =  (−𝟏𝟎𝟔. 𝟗, −𝟏𝟏𝟓. 𝟗, 𝟓𝟕). 

 

 

 

Figure 5.2.6. Examples of trajectories where the fixed point (𝒌, 𝟎) is 

attracting for (𝒄, 𝒌, 𝒎) =  (𝟑𝟏. 𝟒, 𝟑𝟗, 𝟐𝟏). 

Now an example was given for parameters (𝑐 = 16, 𝑘 = 139, 𝑚 = 182) and 

delay 𝑑𝑡 = 0.005 where the fixed point (𝑘, 0) is repelling as shown in the                   

Fig 5.3. 
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Figure 5.3. Example of trajectory where the fixed point  (𝒌, 𝟎) is repelling. 

 

The fixed point  (𝑘, 0) exhibits saddle point behavior for delay 𝑑𝑡 = 0.005 

and 𝑐 = −44.39, 𝑘 = 203.2,  and  𝑚 = −44.6 for 10 distinct sets of initial 

values as depicted in Fig 5.4. 
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Figure 5.4. Example of trajectories where the fixed point (𝒌, 𝟎) is saddle. 
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Local stability analysis of (𝟎, 𝟎):  The Jacobian around (0,0) is given by 
 

𝐽(଴,଴) = ቀ
1 + 𝑑𝑡 0

0 1 − 𝑐𝑑𝑡
ቁ 

The eigenvalues of the Jacobian matrix 𝐽(଴,଴) are 1 + 𝑑𝑡 and1 − 𝑐𝑑𝑡. Therefore 

for any delay term 𝑑𝑡 > 0, there does not exist any parameter such that the 

absolute value of both the eigenvalues are less than one. Hence the fixed point 

(0,0) is never be attracting.  
 

Theorem 5.1: The fixed point (0,0) of the model Eqn. (5.3-5.4) is repelling for 

𝑑𝑡 > 0 and 𝑐 > 0, whenever 𝑐𝑑𝑡 < 2. 

Proof. The proof is straightforward from the result. 
 

Here presented three examples with different parameters (Table 5.5) with varied 

delay term 𝑑𝑡 and corresponding trajectories as shown in Figures                                

Fig. 5.5.1-Fig. 5.5.3 where the fixed point (0,0) is repelling. 

 

Table 5.5. Examples of parameters where (𝟎, 𝟎) is repelling for different 

delays 𝟎. 𝟓, 𝟎. 𝟎𝟎𝟓 and 𝟎. 𝟎𝟎𝟎𝟓 respectively. 

 

Delay Term 

(𝒅𝒕) 

Parameters 

(𝒄, 𝒌, 𝒎) 

Nature 

0.5 (204, 65,4) Attracting to (65, 0) and it is 

repelling from (0,0) for 10 

different initial values. 

0.005 (304,50, 4) Attracting to (50, 0) and it is 
repelling from (0,0) for 10 
different initial values. 

0.0005 (304, 5, 5) Attracting to (5, 0) and it is 
repelling from (0,0) for 10 
different initial values. 
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Fig 5.5.1 Examples of trajectories where fixed point (𝟎, 𝟎) is repelling 

with different delay 𝒅𝒕 = 𝟎. 𝟓. 

 

 

Fig 5.5.2 Examples of trajectories where fixed point (𝟎, 𝟎) is repelling 

with different delay 𝒅𝒕 = 𝟎. 𝟎𝟓. 
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Fig 5.5.3 Examples of trajectories where fixed point (𝟎, 𝟎) is repelling 

with different delay 𝒅𝒕 = 𝟎. 𝟎𝟎𝟎𝟓. 
 

 

The point (0,0) exhibits saddle point behavior for delay 𝑑𝑡 = 0.005 and 𝑐 =

0, 𝑘 = 50 and 𝑚 = 4 for 10 different set of initial values as shown in the                  

Fig. 5.6.  
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Fig 5.6. Examples of trajectories where the fixed point (𝟎, 𝟎) is saddle. 
 

Local stability analysis of ቀ−
𝒄

𝒄ି𝒎
,

𝒄(ି𝒌)ି𝒄ା𝒌𝒎

𝒌(𝒄ି𝒎)𝟐 ቁ  

The Jacobian is given by 

൮

𝑐(𝑘 + 1)𝑑𝑡

𝑘𝑚
+

2𝑐𝑑𝑡

𝑐𝑘 − 𝑘𝑚
+ 1 −𝑐𝑑𝑡

−
𝑑𝑡(𝑘𝑐 + 𝑐 − 𝑘𝑚)

𝑘𝑚
1

൲ 
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The determinant (D) and Trace (T) are given by  

𝑐𝑑𝑡ଶ −
௖ௗ௧(௞ାଵ)(௖ௗ௧ )

௞௠
+

ଶ௖ௗ௧

௖௞
+ 1 and 

௖ௗ௧(௞ାଵ)

௞௠
+

ଶ௖ௗ௧

௖௞ି௞௠
+ 2 resepctively.  

Then from the Result 5.1, the following theorem is proposed. 
 

Theorem 5.2. The fixed point ቀ−
௖

௖ି௠
,

௖(ି௞)ି௖ା௞௠

௞(௖ି௠)మ ቁ is attracting if                 

|𝑻| < 𝟏 + 𝑫 < 𝟐. 

The three-dimensional subspaces 𝑆(௦௔ௗௗ௟௘,ௗ௧) of ℝଷ for different delays 𝑑𝑡 are 

shown in the following Fig 5.7. 

 

  

 

Fig 5.7. Top Left. 𝑺(𝒔𝒂𝒅𝒅𝒍𝒆,𝟏), Top Right: 𝑺(𝒔𝒂𝒅𝒅𝒍𝒆,𝟎.𝟓),                                

Bottom: 𝑺(𝒔𝒂𝒅𝒅𝒍𝒆,𝟎.𝟎𝟎𝟓) 
 

For describing the conditions of fixed point’s local stability, illustrations on the 
above theorem with different choices of sign of the parameters 𝑐, 𝑘, and 𝑚 are 
helpful. 
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Table 5.6. Local Asymptotical Stability (attracting) conditions for           
delay 𝒅𝒕 = 𝟏 
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 Table 5.7. Local Asymptotic Stability (attracting) conditions for             
delay 𝒅𝒕 = 𝟎. 𝟓 
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Table 5.8. Local Asymptotic Stability (attracting) conditions for delay 

𝒅𝒕 = 𝟎. 𝟎𝟎𝟓. 

 

 

 

 



142 
 

In the Table 5.6-Table 5.8, it is found that there are all possible combinations of 

signs of 𝑐, 𝑘, and 𝑚 with delay term 𝑑𝑡 = 1, 0.5 and 0.005 such that the fixed 

point ቀ
ି௖

௖ି௠
,

௖(ି௞)ି௖ା௞௠

௞(௖ି௠)మ ቁ is attracting except one which is remarked as follows. 

 

Remark 5.1. There does not exists any real parameters 𝑐 < 0, 𝑘 > 0 and 𝑚 >

0 such that the fixed point  ቀ
ି௖

௖ି௠
,

௖(ି௞)ି௖ା௞௠

௞(௖ି௠)మ ቁ is attracting while the delay     

𝑑𝑡 = 1, 0.5 and 0.005. 
 

In Fig. 5.8.1-Fig. 5.8.3, a couple of examples of parameters 𝑐, 𝑘  and 𝑚 are 

provided such that the fixed point ቀ
ି௖

௖ି௠
,

௖(ି௞)ି௖ା௞௠

௞(௖ି௠)మ ቁ is attracting for different 

delay 𝑑𝑡.  

 

 

 

Fig 5.8.1. Example of parameters where the fixed point ቀ
ି𝒄

𝒄ି𝒎
,

𝒄(ି𝒌)ି𝒄ା𝒌𝒎

𝒌(𝒄ି𝒎)𝟐 ቁ 

is attracting for 𝒅𝒕 = 𝟎. 𝟓. 
 

It is observed that for ten initial values taken from the neighborhood of the fixed 
point, trajectories are converging to (1.33333, 7.11111).  
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Fig 5.8.2. Example of parameters where the fixed point ቀ
ି𝒄

𝒄ି𝒎
,

𝒄(ି𝒌)ି𝒄ା𝒌𝒎

𝒌(𝒄ି𝒎)𝟐 ቁ 

is attracting for 𝒅𝒕 = 𝟎. 𝟓. 

It is observed that for ten initial values taken from the neighborhood of the fixed 
point, the trajectories are attracting to the fixed point (8,0) which is not an 
expected outcome. The basin of attraction of the fixed point (8,0) is too big to 
attract the trajectories from even the neighborhood of the other fixed point.  

 

 

Fig 5.8.3. Example of parameters where the fixed point ቀ
ି𝒄

𝒄ି𝒎
,

𝒄(ି𝒌)ି𝒄ା𝒌𝒎

𝒌(𝒄ି𝒎)𝟐 ቁ 

is attracting for 𝒅𝒕 = 𝟎. 𝟎𝟎𝟓. 
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It was observed that for ten initial values taken from neighborhood of the fixed 

points, trajectories are converging to (0.0481863, 0.692755). 
 

We have conditions with different choices of sign of the parameters 𝑐, 𝑘 and 𝑚 

in describing the local stability (repelling) conditions of the fixed 

point ቀ
ି௖

௖ି௠
,

௖(ି௞)ି௖ା௞௠

௞(௖ି௠)మ ቁ. 

Table 5.9. Local Asymptotic Stability (repelling) conditions for delay   

 𝒅𝒕 = 𝟏. 

 
 

Table 5.10. Local Asymptotic Stability (repelling) conditions for 

delay 𝒅𝒕 = 𝟎. 𝟓. 
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Table 5.11. Local Asymptotic Stability (repelling) conditions for 

delay 𝒅𝒕 = 𝟎. 𝟎𝟎𝟓. 

 
 

In the Tables – 5.9,5.10 & 5.11, it is found that there are some sign combinations 

of 𝑐, 𝑘, and 𝑚 with delay term 𝑑𝑡 = 1, 0.5 and 0.005 such that the fixed point 

ቀ
ି௖

௖ି௠
,

௖(ି௞)ି௖ା௞௠

௞(௖ି௠)మ ቁ is repelling except the ones which are remarked as follows. 

 

Remark 5.2. There does not exists any real numbers satisfying  

 

such that the fixed point ቀ
ି௖

௖ି௠
,

௖(ି௞)ି௖ା௞௠

௞(௖ି௠)మ ቁ is repelling while the delay                 

𝑑𝑡 = 1, 0.5, and 0.05. 
 

In Fig. 5.9.1 – Fig. 5.9.3, a couple of examples of parameters 𝑐, 𝑘 and 𝑚 were 

provided such that the fixed point ቀ
ି௖

௖ି௠
,

௖(ି௞)ି௖ା௞௠

௞(௖ି௠)మ ቁ is repelling. 
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Fig 5.9.1. Example of parameters where the fixed point ቀ
ି𝒄

𝒄ି𝒎
,

𝒄(ି𝒌)ି𝒄ା𝒌𝒎

𝒌(𝒄ି𝒎)𝟐 ቁ 

is repelling for 𝒄 = 𝟓, 𝒌 = 𝟖, 𝒎 = 𝟐 & 𝒅𝒕 = 𝟎. 𝟓. 
 
It is observed that for ten initial values taken from neighborhood of the fixed 
point, trajectories are repelling but attracting to the other fixed point (8,0). 

 
Fig 5.9.2. Example of parameters where the fixed point ቀ

ି𝒄

𝒄ି𝒎
,

𝒄(ି𝒌)ି𝒄ା𝒌𝒎

𝒌(𝒄ି𝒎)𝟐 ቁ 

is repelling for 𝒄 = −𝟖𝟔𝟕, 𝒌 = 𝟕𝟒𝟏, 𝒎 = −𝟖𝟕𝟐 & 𝒅𝒕 = 𝟎. 𝟎𝟎𝟓. 
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It is observed that for ten initial values taken from neighborhood of the fixed 
point, trajectories are repelling from the fixed point but attracting to the other 
fixed point (741,0). 
 

 
Fig 5.9.3. Example of parameters where the fixed point ቀ

ି𝒄

𝒄ି𝒎
,

𝒄(ି𝒌)ି𝒄ା𝒌𝒎

𝒌(𝒄ି𝒎)𝟐 ቁ 

is repelling for 𝒄 = 𝟓, 𝒌 = −𝟖, 𝒎 = 𝟗𝟐 & 𝒅𝒕 = 𝟎. 𝟎𝟎𝟓. 
 
 
So far, the study explored the three-fixed point’s local asymptotic stability of 

the Rosenzweig-Macarthur model eqs (5.3-5.4). In the following section, the 

higher order periodic solutions (limit cycles) of the same model were explored. 
 

5.2.2 Limit Cycle Solutions of Eqs. (5.3-5.4) 
 

Computationally, determined a set of parameters for attracting limit cycles   

[18], [23], [24]. The delay 𝑑𝑡 = 0.005 was fixed and number of iterations 

observed is 50000. The initial values are taken from neighborhood of all three 

fixed points (trajectories shown only for neighborhood of (0,0)). The parameter 

𝑐 is chosen as geometric mean, arithmetic mean and harmonic mean 

respectively of the other two parameters 𝑘 and 𝑚 as shown in Fig. 5.10.1-Fig. 

5.10.12. 
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Fig 5.10.1. limit cycle for the parameters 𝒌 = 𝟒, 𝒎 = 𝟒𝟔 and                          
𝒄 = 𝑮𝑴(𝒌, 𝒎). 

 

 

Fig 5.10.2. limit cycle for the parameters 𝒌 = 𝟒, 𝒎 = 𝟒𝟔 and                          
𝒄 = 𝑨𝑴(𝒌, 𝒎). 
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Fig 5.10.3. limit cycle for the parameters 𝒌 = 𝟒, 𝒎 = 𝟒𝟔 and                          
𝒄 = 𝑯𝑴(𝒌, 𝒎). 

 
 

Fig 5.10.4. limit cycle for the parameters 𝒌 = 𝟐, 𝒎 = 𝟖𝟎 and                          
𝒄 = 𝑮𝑴(𝒌, 𝒎). 
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Fig 5.10.5. limit cycle for the parameters 𝒌 = 𝟐, 𝒎 = 𝟖𝟎 and                          

𝒄 = 𝑨𝑴(𝒌, 𝒎). 
 

 
Fig 5.10.6. limit cycle for the parameters 𝒌 = 𝟐, 𝒎 = 𝟖𝟎 and                          

𝒄 = 𝑯𝑴(𝒌, 𝒎). 
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Fig 5.10.7. limit cycle for the parameters 𝒌 = 𝟕, 𝒎 = 𝟔𝟓 and                          
𝒄 = 𝑮𝑴(𝒌, 𝒎). 

 

 
Fig 5.10.8. limit cycle for the parameters 𝒌 = 𝟕, 𝒎 = 𝟔𝟓 and                          

𝒄 = 𝑨𝑴(𝒌, 𝒎). 
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Fig 5.10.9. limit cycle for the parameters 𝒌 = 𝟕, 𝒎 = 𝟔𝟓 and                          

𝒄 = 𝑯𝑴(𝒌, 𝒎). 
 

 
Fig 5.10.10. limit cycle for the parameters 𝒌 = 𝟗, 𝒎 = 𝟓𝟔 and                          

𝒄 = 𝑮𝑴(𝒌, 𝒎). 
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Fig 5.10.11. limit cycle for the parameters 𝒌 = 𝟗, 𝒎 = 𝟓𝟔 and                          

𝒄 = 𝑨𝑴(𝒌, 𝒎). 
 

 
Fig 5.10.12. limit cycle for the parameters 𝒌 = 𝟗, 𝒎 = 𝟓𝟔 and                          

𝒄 = 𝑯𝑴(𝒌, 𝒎). 
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It is observed that, for the four sets of (𝑘, 𝑚) values in Fig. 5.10.1-Fig. 5.10.12, 

the three fixed points of the models (5.3-5.4) are all repelling and consequently 

the limit cycles are attracting. Based on ample amount of simulations of similar 

instances, the following remark, observation and a counter example has been 

marked.  

Remark 5.3. For delay 𝑑𝑡 = 0.005, there exists parameters                                      

(𝑐 = 𝐴𝑀(𝑘, 𝑚), 𝑘, 𝑚) such that the limit cycle exist if and only if same happens 

true for (𝑐 = 𝐺𝑀(𝑘, 𝑚), 𝑘, 𝑚). 

Also observed that there does not exist any limit cycles for negative 

parameters 𝑐, 𝑘, & 𝑚. 

Example 5.1. There are parameters (𝑐, 𝑘, 𝑚) such that the limit cycle exists 

where 𝑐 = 𝐴𝑀(𝑘, 𝑚) and 𝑐 = 𝐺𝑀(𝑘, 𝑚) but not for 𝑐 = 𝐻𝑀(𝑘, 𝑚) as stated in 

the 3rd and 4th row examples in Fig. 5.10.1 – Fig. 5.10.12. 
 

5.3 Computational dynamics of Equations (5.5-5.6) 
 

5.3.1 Local Stability Analysis  
 

Here, the local asymptotic stability of the fixed points of the variant of the 

Rosenzweig-Macarthur model Eqs.(5.5-5.6) is discussed. The fixed points are 

(𝑘, 0), (0,0),  

൬
ଵ

ଶ
൫−√𝑘√4𝑐 + 𝑘𝑚ଶ − 2𝑘𝑚 + 𝑘 + 𝑘(−𝑚) +

𝑘൯,
ି√௞௠√ସ௖ା௞௠మିଶ௞௠ା௞ିଶ௖ି௞௠మା௞௠

ଶ௖
൰ and ൬

ଵ

ଶ
൫−√𝑘√4𝑐 + 𝑘𝑚ଶ − 2𝑘𝑚 + 𝑘 +

𝑘(−𝑚) + 𝑘൯,
√௞௠√ସ௖ା௞௠మିଶ௞௠ା௞ିଶ௖ି௞௠మା௞௠

ଶ௖
൰. 

 

For these four fixed points, the local asymptotic stability analysis was discussed 

by making the system of equations (5.5-5.6) linearized about the fixed points. 
 

Local Stability Analysis of (𝒌, 𝟎) 

The linearized system 𝑋௧ାଵ = 𝐽𝑋௧   (where 𝑋௧ = [𝑥௧, 𝑦௧]் 𝑎𝑛𝑑 𝐽 is the Jacobian) 

is obtained by linearizing the model equations (5.5-5.6) about the fixed point 

(𝑘, 0). The Jacobian about the fixed point (𝑘, 0) is 

𝐽(௞,଴) = ൬
1 − 𝑑𝑡 −𝑑𝑡𝑘𝑚

0 𝑑𝑡(𝑘𝑚 − 𝑐) + 1
൰ 
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The eigenvalues are 1 − 𝑑𝑡 and 𝑑𝑡(𝑘𝑚 − 𝑐) + 1. In the following tables        

Table 5.12-Table 5.14, the attracting, repelling and saddle conditions are given 

for the fixed point (𝑘, 0) respectively. 

Table 5.12. Eigenvalues and corresponding conditions for attracting of 

(𝒌, 𝟎) for different delays. 

 

 

Table 5.13. Eigenvalues and corresponding conditions for repelling of 

(𝒌, 𝟎) for different delays. 

 

 

 

 



156 
 

Table 5.14. Eigenvalues and corresponding conditions for saddle of (𝒌, 𝟎) 

for different delays. 

 
 

 

Here the visualizations in three-dimensional subspaces 

𝑇(௔௧௧௥௔௖௧௜௡௚,ௗ௧), 𝑇(௥௘௣௘௟௟௜௡௚,ௗ௧), and 𝑇(௦௔ௗௗ௟௘,ௗ௧) of ℝଷ for different delays 𝑑𝑡, 

which are shown in Fig 5.11.1-Fig.5.11.3 for model Eqs. (5.5-5.6). In precise,  

𝑇(௔௧௧௥௔௖௧௜௡௚,ௗ௧) denotes the space of parameters (𝑐, 𝑘, 𝑚) in ℝଷ for which the 

fixed point (𝑘, 0) is attracting and similarly others follow. 

 

Here a couple of examples of parameters (𝑐, 𝑘, 𝑚) for which (𝑘, 0) is attracting 

are demonstrated as shown in Table 5.15. 
 

Table 5.15. Examples of parameters where (𝒌, 𝟎) is attracting for 

different delays. 
 

Delay Term 

(𝒅𝒕) 

Parameters 

(𝒄, 𝒌, 𝒎) 

Nature 

1 (38, −15, −2.43668) Attracting to (−15,0) 

1 (−113, 86, −1.314) Attracting to (86,0) 

0.5 (3.69841, −67, −0.0455083) Attracting to (−67,0) 

0.5 (−267, 84, −3.22479) Attracting to (84,0) 

0.005 (204, 6, −9.5) Attracting to (6,0) 

0.005 (−267, 84, −7.81818) Attracting to (84,0) 
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Fig 5.11.1. Top Left: 𝑻(𝒂𝒕𝒕𝒓𝒂𝒄𝒕𝒊𝒏𝒈,𝟏), Top Right: 𝑻(𝒂𝒕𝒕𝒓𝒂𝒄𝒕𝒊𝒏𝒈,𝟎.𝟓), 

Bottom: 𝑻(𝒂𝒕𝒕𝒓𝒂𝒄𝒕𝒊𝒏𝒈,𝟎.𝟎𝟎𝟓). 

 

Fig 5.11.2. Top Left: 𝑻(𝒓𝒆𝒑𝒆𝒍𝒍𝒊𝒏𝒈,𝟏), Top Right: 𝑻(𝒓𝒆𝒑𝒆𝒍𝒍𝒊𝒏𝒈,𝟎.𝟓), 

Bottom: 𝑻(𝒓𝒆𝒑𝒆𝒍𝒍𝒊𝒏𝒈,𝟎.𝟎𝟎𝟓). 
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Fig 5.11.3. Top Left: 𝑻(𝒔𝒂𝒅𝒅𝒍𝒆,𝟏), Top Right: 𝑻(𝒔𝒂𝒅𝒅𝒍𝒆,𝟎.𝟓), 

Bottom: 𝑻(𝒔𝒂𝒅𝒅𝒍𝒆,𝟎.𝟎𝟎𝟓). 

 

The trajectory plot in the following Fig. 5.12.1-Fig. 5.12.2 is shown for each 

examples given in Table 5.15. 
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Fig. 5.12.1. Examples of trajectories where the fixed point (𝒌, 𝟎) is 

attracting. Top Left: 𝒅𝒕 = 𝟏, Top Right: 𝒅𝒕 = 𝟎. 𝟓, Bottom: 𝒅𝒕 = 𝟎. 𝟎𝟎𝟓. 
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Fig. 5.12.2. Examples of trajectories where the fixed point (𝒌, 𝟎) is 

attracting. Top Left: 𝒅𝒕 = 𝟏, Top Right: 𝒅𝒕 = 𝟎. 𝟓, Bottom: 𝒅𝒕 = 𝟎. 𝟎𝟎𝟓. 
 

Now considered another example of parameters 𝑐 = 113.2, 𝑘 = 103.5 & 𝑚 =

62.4 and delay 𝑑𝑡 = 0.005 where the fixed point (𝑘, 0) is repelling as shown 

in Fig 5.13. In the neighborhood of (𝑘, 0), for 10 different initial value sets, it 

is observed that the convergence of trajectories to the other fixed point 

(1.8431, 0.0160) is taking place as shown in Fig 5.13. 
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Fig. 5.13. Examples of trajectories where the fixed point (𝒌, 𝟎) is repelling. 
 

Local Stability Analysis of (𝟎, 𝟎)  

The linearized system 𝑋௧ାଵ = 𝐽𝑋௧, where 𝑋௧ = [𝑥௧, 𝑦௧]் 𝑎𝑛𝑑 𝐽 is the Jacobian 

is obtained by linearizing the model equations Eqn. (5.5-5.6) about the fixed 

point (0,0).  

The Jacobian about (0,0) is given by 

𝐽(଴,଴) = ቀ
𝑑𝑡 + 1 0

0 1 − 𝑐𝑑𝑡
ቁ 

The eigenvalues are 𝑑𝑡 + 1 and 1 − 𝑐𝑑𝑡. Therefore for any delay term 𝑑𝑡 > 0, 

there does not exists any parameter such that the absolute value of both the 

eigenvalues are less than one. Hence, the fixed point (0,0) can never be 

attracting as in the case of Eqs. (5.3-5.4).   
 

Theorem 5.3. The fixed point (0,0) of the model Eqs (5.5-5.6) is repelling for 

𝑑𝑡 > 0 and 𝑐𝑑𝑡 < 2 holds.  

Proof. Straight forward from Result 5.1  
 

The point (0,0) exhibits saddle behavior for delay 𝑑𝑡 = 0.005 and 𝑐 = 0, 𝑘 =

50 and 𝑚 = 4 for ten distinct initial value sets as depicted in Fig.  5.10. Here 

from a small neighborhood of the point (0,0), all the ten initial conditions were 

chosen. 
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Fig  5.14. Example of trajectories where the fixed point (𝟎, 𝟎) is saddle. 
 

Local Stability Analysis of the fixed point 

ቆ
𝟏

𝟐
ቀ−√𝒌ඥ𝟒𝒄 + 𝒌𝒎𝟐 − 𝟐𝒌𝒎 + 𝒌 + 𝒌(−𝒎) + 𝒌ቁ ,

−√𝒌𝒎√𝟒𝒄 + 𝒌𝒎𝟐 − 𝟐𝒌𝒎 + 𝒌 − 𝟐𝒄 − 𝒌𝒎𝟐 + 𝒌𝒎

𝟐𝒄
ቇ 

Before proceeding to local stability analysis, the interest is in parameters 

𝑐, 𝑘 𝑎𝑛𝑑 𝑚 such that the fixed point is real. Following the four subsets of ℝଷ of 

parameters (𝑐, 𝑘, 𝑚) are obtained such that the fixed point lies in the I, II, III 

and IV quadrants respectively as shown in Fig 5.15. 
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Fig 5.15. Subspace of parameters such that the fixed point lies in the first 

quadrant (Top Left), second quadrant (Top Right), third quadrant 

(Bottom Left) and fourth quadrant (Bottom Right). 
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The conditions for the fixed point to lie in I, II, III and IV quadrants respectively 

are shown below: 
 

Result 5.2. The fixed point  

ቆ
1

2
ቀ−√𝑘ඥ4𝑐 + 𝑘𝑚ଶ − 2𝑘𝑚 + 𝑘 + 𝑘(−𝑚) + 𝑘ቁ ,

−√𝑘𝑚√4𝑐 + 𝑘𝑚ଶ − 2𝑘𝑚 + 𝑘 − 2𝑐 − 𝑘𝑚ଶ + 𝑘𝑚

2𝑐
ቇ 

lies in the 

 I quadrant if 𝑐 < 0, 𝑚 − 1, & 
ିସ௖

(௠ିଵ)మ ≤ 𝑘 ≤
௖

௠
 

 II quadrant if 𝑚 > 1; 𝑐 < 0 & 𝑘 ≥
ିସ௖

(௠ିଵ)మ 

 III quadrant if both {𝑐, 𝑘} > 0 

 IV quadrant if 𝑐 < 0, 𝑘 >
௖

௠
& 𝑚 ≤ −1 

 

The Jacobian about the fixed point is given by  

 

𝐽 =

⎝

⎜
⎜
⎜
⎛

1

2
൭𝑑𝑡 ൭𝑚 +

ඥ𝑘(𝑚 − 1)ଶ + 4𝑐

√𝑘
− 1൱ + 2൱

2𝑐ଶ𝑑𝑡

𝑘(𝑚 − 1)𝑚 + √𝑘ඥ𝑘(𝑚 − 1)ଶ + 4𝑐𝑚

1

2
𝑑𝑡 ൭𝑚 +

ඥ𝑘(𝑚 − 1)ଶ + 4𝑐

√𝑘
+ 1൱ −

𝑐𝑑𝑡 ቆ𝑚 +
ඥ𝑘(𝑚 − 1)ଶ + 4𝑐

√𝑘
+ 1ቇ − 2𝑚

2𝑚 ⎠

⎟
⎟
⎟
⎞

 

 

Consider 𝐷 and 𝑇 to be respectively determinant and trace of the Jacobian 𝐽, the 

from the Result 5.1 the following theorem was proposed. 
 

Theorem 5.4. The fixed point of the model Eqs (5.5-5.6)   

ቆ
1

2
ቀ−√𝑘ඥ4𝑐 + 𝑘𝑚ଶ − 2𝑘𝑚 + 𝑘 + 𝑘(−𝑚)

+ 𝑘ቁ ,
−√𝑘𝑚√4𝑐 + 𝑘𝑚ଶ − 2𝑘𝑚 + 𝑘 − 2𝑐 − 𝑘𝑚ଶ + 𝑘𝑚

2𝑐
ቇ 

is attracting if |𝑇| < 1 + 𝐷 < 2. 

Based on computational simulation with delay 𝑑𝑡 = 1, following remarks are 

made. 

Remark 5.4. There does not exist any parameters 𝑐 = 𝑘 = 𝑚 such that the 

above theorem holds. 
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Remark 5.5. If any one of the parameters is zero, then the above Theorem fails.  
 

While we consider the delay 𝑑𝑡 = 0.005, through simulation only one 

instance of the parameters 𝑐 =
ସସ

ହ
, 𝑘 = −

ହଷ

ଵ଴
, and 𝑚 = −

ଵ଻

ଵ଴
 is found for which 

the fixed point   

ቆ
1

2
ቀ−√𝑘ඥ4𝑐 + 𝑘𝑚ଶ − 2𝑘𝑚 + 𝑘 + 𝑘(−𝑚)

+ 𝑘ቁ ,
−√𝑘𝑚√4𝑐 + 𝑘𝑚ଶ − 2𝑘𝑚 + 𝑘 − 2𝑐 − 𝑘𝑚ଶ + 𝑘𝑚

2𝑐
ቇ 

is complex. Hence there does not exists any real parameters such that the fixed 

point (real) is attracting. Based on the computational evidence, the following 

conjecture is made. 

Conjecture 5.1. There does not exist any real parameters (𝑐, 𝑘, 𝑚) and delay 

𝑑𝑡 > 0 such that the fixed point  

ቆ
1

2
ቀ−√𝑘ඥ4𝑐 + 𝑘𝑚ଶ − 2𝑘𝑚 + 𝑘 + 𝑘(−𝑚)

+ 𝑘ቁ ,
−√𝑘𝑚√4𝑐 + 𝑘𝑚ଶ − 2𝑘𝑚 + 𝑘 − 2𝑐 − 𝑘𝑚ଶ + 𝑘𝑚

2𝑐
ቇ 

is attracting. 
 
 

Here the subspace of parameters in ℝଷ for different delay 𝑑𝑡 = 0.5, 0.005 and 

0.0005 was obtained such that the fixed point is repelling which is shown in 

Fig.  5.16. 
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Fig 5.16. Subspace of parameters such that the fixed point is repelling for 

𝒅𝒕 = 𝟎. 𝟓, 𝟎. 𝟎𝟓 and 𝟎. 𝟎𝟎𝟎𝟓 in Top Left, Top Right and Bottom of the 

figure respectively. 

 
Local Stability Analysis of  

ቆ
𝟏

𝟐
ቀ−√𝒌ඥ𝟒𝒄 + 𝒌𝒎𝟐 − 𝟐𝒌𝒎 + 𝒌 + 𝒌(−𝒎) + 𝒌ቁ ,

√𝒌𝒎√𝟒𝒄 + 𝒌𝒎𝟐 − 𝟐𝒌𝒎 + 𝒌 − 𝟐𝒄 − 𝒌𝒎𝟐 + 𝒌𝒎

𝟐𝒄
ቇ. 

Before proceeding to local stability analysis, the interest is in parameters 

𝑐, 𝑘 𝑎𝑛𝑑 𝑚 such that the fixed point is real. Following the four subsets of ℝଷ of 

parameters (𝑐, 𝑘, 𝑚) were obtained such that the fixed point lies in the I, II, and 

IV quadrants respectively as shown in Fig 5.17. 
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Fig. 5.17. Subspace of parameters such that the fixed point lies in the first 

quadrant (Top Left), second quadrant (Top Right), and fourth quadrant 

(Bottom). 
 

The conditions for the fixed point to lie in the first, second, fourth quadrants 

respectively are shown below: 
 

Result 5.3. The fixed point  

ቆ
1

2
ቀ−√𝑘ඥ4𝑐 + 𝑘𝑚ଶ − 2𝑘𝑚 + 𝑘 + 𝑘(−𝑚)

+ 𝑘ቁ ,
√𝑘𝑚√4𝑐 + 𝑘𝑚ଶ − 2𝑘𝑚 + 𝑘 − 2𝑐 − 𝑘𝑚ଶ + 𝑘𝑚

2𝑐
ቇ 

lies in the 

 I quadrant if 𝑐 < 0, 𝑚 − 1, & 𝑘 ≥
ିସ௖

(௠ିଵ)మ 
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 II quadrant if 𝑚 > 1; 𝑐 < 0 & 𝑘 ≥
ିସ௖

(௠ିଵ)మ 

 IV quadrant if 𝑐 > 0, 𝑘 > 0 & 𝑚 ≤ 0 

Remark 5.6. There does not exist any real parameter 𝑐, 𝑘 and 𝑚 such that the 

fixed point lies in the III quadrant. 
 

The Jacobian about the fixed point is given by  

𝐽 =

⎝

⎜
⎜
⎜
⎛

1

2
൭𝑑𝑡 ൭𝑚 −

ඥ𝑘(𝑚 − 1)ଶ + 4𝑐

√𝑘
− 1൱ + 2൱

2𝑐ଶ𝑑𝑡

𝑘(𝑚 − 1)𝑚 − √𝑘ඥ𝑘(𝑚 − 1)ଶ + 4𝑐𝑚

1

2
𝑑𝑡 ൭𝑚 −

ඥ𝑘(𝑚 − 1)ଶ + 4𝑐

√𝑘
+ 1൱ −

𝑐𝑑𝑡 ቆ𝑚 −
ඥ𝑘(𝑚 − 1)ଶ + 4𝑐

√𝑘
+ 1ቇ − 2𝑚

2𝑚 ⎠

⎟
⎟
⎟
⎞

 

Consider 𝐷 and 𝑇 to be respectively determinant and trace of the Jacobian 𝐽,  the 

from the Result 5.1 we have the following theorem 5.5. 
 

Theorem 5.5. The fixed point of the model Eqs (5.5-5.6)   

ቆ
1

2
ቀ−√𝑘ඥ4𝑐 + 𝑘𝑚ଶ − 2𝑘𝑚 + 𝑘 + 𝑘(−𝑚)

+ 𝑘ቁ ,
√𝑘𝑚√4𝑐 + 𝑘𝑚ଶ − 2𝑘𝑚 + 𝑘 − 2𝑐 − 𝑘𝑚ଶ + 𝑘𝑚

2𝑐
ቇ 

is attracting if |𝑇| < 1 + 𝐷 < 2. 

Based on computational simulation with delay 𝑑𝑡 = 0.005, following remarks 

are made. 

Remark 5.7. The theorem 5.5 holds well if the parameters are all equal such 

that 1 < 𝑘 < 201.99. 
 

Remark 5.8. If the parameter 𝑐 = 0, then the Theorem 5.5 holds provided 

𝑘 > 0 and  −273.818 < 𝑚 < 0.818061. 

Remark 5.9. There does not exist any non-zero parameter 𝑐 and 𝑚 = 𝑘 = 0 

such that the Theorem 5.5 holds. 

Here presented a set of examples of parameters such that the Theorem 5.5 holds 

well. 

 



169 
 

Example 5.2.  Consider 𝑐 = 3, 𝑘 = 5, and 𝑚 = 1. From the neighborhood of 

the fixed point (3.87298, 0.290994), 10 different initial values were chosen 

and it is noticed that the fixed point  (3.87298, 0.290994) which lies in the first 

quadrant is attracting which is depicted in the following Fig 5.18. 

 

 

Fig 5.18. Plot of attracting trajectories. 

 

Example 5.3.  Consider 𝑘 = −65, 𝑚 = 92, and 𝑐 = 𝐴𝑀(𝑘, 𝑚). From the 

neighborhood of the point (0.148, 0.011), 10 different initial values were 

chosen and it is noticed that the fixed point (0.148, 0.011) which lies in the first 

quadrant is attracting which is depicted in the following Fig 5.19. 
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Fig 5.19. Plot of attracting trajectories 

Here the subspace of parameters in ℝଷ for different delay 𝑑𝑡 = 0.5, 0.005 and 

0.0005 was obtained such that the fixed point is repelling which is shown in 

Fig 5. 20. 

 

Figure 5.20. Subspace of parameters such that the fixed point is repelling 

for 𝒅𝒕 = 𝟎. 𝟓, 𝟎. 𝟎𝟓 and 𝟎. 𝟎𝟎𝟎𝟓 in Top Left, Top Right and Bottom of the 

figure respectively. 
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If we consider the delay 𝑑𝑡 = 0.005 with parameters 𝑐 = 75, 𝑘 = 1 and              

𝑚 = 10, the trajectories are repelling (attracting to the other fixed point (𝑘, 0)) 

from (5.25961, −0.298719) for any initial conditions taken from 

neighborhood as shown in Fig  5.21. 
 

 

Fig 5.21. Plot of repelling trajectories. 

Consider another example of parameters 𝑐 = −42, 𝑘 = −47, and 𝑚 = −37 

with the delay 𝑑𝑡 = 0.005, where the trajectories are repelling (making limit 

cycle)  from (1.10458, −0.269176) for any initial conditions taken from 

neighborhood as shown in Fig 5.22. It is noted that, the fixed point 

corresponding to these parameters is no more real, it is complex number 

through.  
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Fig 5.22. Plot of repelling trajectories. 
 

5.4 Limit cycle solutions of Eqs. (5.5-5.6) 
 

Here a set of parameters were determined computationally for attracting limit 

cycles of the model Eqs (5.5-5.6).As previous one, here the delay 𝑑𝑡 = 0.005 

was fixed with different number of iterations and initial values are taken from 

neighborhood of all three fixed points (trajectories are shown only for 

neighborhood of  (𝟎, 𝟎)) . Considered the parameter 𝒄 as arithmetic mean 

of other two parameters 𝒌 and 𝒎 as shown in the figures Fig. 5.23.1-Fig. 

5.23.3. 
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Fig 5.23.1. Limit Cycle (above) and trajectories (below) for the 

parameters 𝒌 = −𝟑𝟖𝟖, 𝒎 = −𝟑𝟓𝟓 & 𝒄 = 𝑮𝑴(𝒌, 𝒎). 
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Fig 5.23.2. Limit Cycle (above) and trajectories (below) for the 

parameters 𝒌 = 𝟒𝟔𝟔, 𝒎 = −𝟑𝟔𝟐 & 𝒄 = 𝑨𝑴(𝒌, 𝒎). 
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Fig 5.23.3. Limit Cycle (above) and trajectories (below) for the 

parameters 𝒌 = 𝟓𝟖𝟖, 𝒎 = −𝟑𝟖𝟎 & 𝒄 = 𝑨𝑴(𝒌, 𝒎). 
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Here one more example of parameters 𝑘 = 32, 𝑚 = −23 and 𝑐 = 𝐴𝑀(𝑘, 𝑚) 

was provided such that the Eqs (5.5-5.6) possesses periodic two solutions. The 

periodic solution is (19.066, 0.5589) and (19.8906, −0.2738) which is 

depicted in Fig 5.24. 

 

Fig 5.24. Plot of Period 2 trajectories for ten different initial values. 

 

Here another example of parameters 𝑘 = 386, 𝑚 = 410 and 𝑐 = 𝐴𝑀(𝑘, 𝑚) 

such that the Eqs (5.5-5.6) possess period two solution is given. The periodic 

solution  is (0.0147, 3.3743) and (−0.0182, −3.3778) which is depicted in 

Fig 5.25. 
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Fig 5.25. Plot of Period 2 trajectories for ten different initial values. 

 

Here one example of parameters 𝑘 = 28, 𝑚 = −288 and 𝑐 = 𝐴𝑀(𝑘, 𝑚) such 

that the Eqs (5.5-5.6) possesses period two solution was given. The periodic 

solution is (1.7762, 0.0499) and (1.9061, − 0.0481) which is depicted in           

Fig 5.26. 

 

 

Fig 5.26. Plot of period 2 trajectories for ten different initial values. 
 

The summary of dynamics of Rosenzweig-Macarthur models by means of 

comparison between the equations (5.3-5.4) and (5.5-5.6) is shown in the 

following section. 
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5.5 Comparison of Dynamics 
 

This section deals with the quantitative comparison of the dynamics of the 

Rosenzweig-Macarthur model as stared in Eqs (5.3-5.4) and Eqs (5.5-5.6).  In 

transiting from the Rosenzweig-Macarthur model Eqs (5.3-5.4) with real 

parameters to the model Eqs (5.5-5.6), foremost change is in the count of fixed 

points (from three to four). The points (0,0) and (𝑘, 0) remain fixed for both 

the models. The following are some qualitative comparative observations: 

 The fixed point (0,0) is not attracting for both the models  

 In both the systems, the repelling cases for the fixed points are sensitive 

to initial value especially to value of 𝑦. 

 The fixed point (0,0) is repelling under the same conditions as derived. 

 The fixed point (0,0) exhibits saddle behavior in both the models. 

 The fixed point (𝑘, 0) has a large basin of attraction in the system Eqs 

(5.3-5.4) while for the system Eqs (5.5-5.6) the basin of attraction of 

fixed point  

ቆ
1

2
ቀ−√𝑘ඥ4𝑐 + 𝑘𝑚ଶ − 2𝑘𝑚 + 𝑘 + 𝑘(−𝑚)

+ 𝑘ቁ ,
√𝑘𝑚√4𝑐 + 𝑘𝑚ଶ − 2𝑘𝑚 + 𝑘 − 2𝑐 − 𝑘𝑚ଶ + 𝑘𝑚

2𝑐
ቇ 

is large. 
 

 In the system (5.3-5.4) there does not exists any attracting limit cycle for 

any negative parameters (𝑐, 𝑘, 𝑚) but contrary to it the system equations 

(5.5-5.6) consists of attracting limit cycles for negative parameters also. 
 

Here the focus is on specific examples for quantitative comparison of dynamics 

of the model equations Eqs. (5.3-5.4) and Eqs. (5.5-5.6).  

Taking parameters 𝑐 = 1, 𝑘 = 5 and 𝑚 = 2 for both the models studied the 

model to see the trajectories and corresponding two dimensional plots in                   

Fig. 5.27 for initial values 𝑥଴ = 1, 𝑦଴ = 2. 
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Fig 5.27. Plot of trajectories and two dimensional plot for parameters           

 𝒄 = 𝟏, 𝒌 = 𝟓, and 𝒎 = 𝟐 for Eqs (5.3-5.4) (below) and Eqs (5.5-5.6) 

(above). 
 

It is seen in that for the equations (5.3-5.4) the trajectory is convergent and for 

the Eqs (5.5-5.6) the trajectory is periodic as depicted in Fig 5.27.  
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The parametric two dimensional plots were drawn where the parameters 𝑥 and 

𝑦 are varying from 0 𝑡𝑜 2.5 and 0 𝑡𝑜 1.5 respectively with 200 iterations for 

both the models as shown in Fig 5.28. 

 

 
Fig 5. 28. Parametric two dimensional plots for the parameters                       

𝒄 = 𝟏, 𝒌 = 𝟓 and 𝒎 = 𝟐 for the Eqs (5.3-5.4) and Eqs (5.5-5.6). 

As expected, for the ranges of different initial values (𝑥, 𝑦) for the parameters 

𝑐 = 1, 𝑘 = 5, and 𝑚 = 2, trajectories are making a limit cycle in the model Eqs 

(5.3-5.4) and convergent for the model Eqs (5.5-5.6) as observed left and right 

images of Fig. 5.28  respectively. 
  

Now the same was done with two different values of the parameter 𝑘 = 2, and 

𝑘 = 7 with 𝑐 = 1, 𝑚 = 2 for both the model Eqs (5.3-5.4) and Eqs (5.5-5.6) 

which is shown in Fig 5.29. 
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Fig 5.29. Parametric two-dimensional plot for the parameters                     

𝒄 = 𝟏, 𝒌 = 𝟐 & 𝟕 and 𝒎 = 𝟐 for Eqs (5.3-5.4) (above) and                           

Eqs (5.5-5.6) (below). 

 
5.6 Conclusion 
 

The dynamics of Rosenzweig-McArthur model under both prey and predator 

perspectives are studied. Local stability analysis was conducted at fixed points. 

The limit cycle solutions are discussed. Through examples, quantitative 

comparison of dynamics of the models is made.  
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CHAPTER 6. CONCLUSION 
 

In the present work, the first objective was to study a three-dimensional chaotic 

cancer model.  A model was proposed to study the dynamic nonlinear 

interactions between tumor, healthy host, and effector immune cells where all 

the parameters are considered as non-negative real numbers. The study explored 

the dynamics of the model computationally.  The study revealed that the 

parameters of the system are very sensitive and for a range of positive values of 

the parameters, the system exhibited chaos.  Some of the similar previous 

studies hinted about the existence of chaotic behavior but in this work, this fact 

was established by using Hurst exponent and fractal dimension.  
 

In the study of Nicholson Bailey models, the dynamics of the model equations 

are reinvestigated by considering the parameters of the system as real numbers 

instead of restricting them only to positive real numbers as in the case of other 

significant studies of the Nicholson Bailey models. Our study revealed that the 

system exhibits all sorts of dynamics such as chaotic, periodic, locally stable, 

and unstable equilibriums.  
 

In addition to this, a scaling model was considered by including scaling factors 

in the Nicholson Bailey model and studied its dynamics. For the scaled system, 

it was obtained that the fixed points range over two-dimensional plane, unlike 

the original unscaled model. It was observed that the behavior of the system 

changed drastically with changes in the system parameters. Several bifurcations 

were observed and plotted. The impact of scaling factors on the sensitivity of 

chaotic behavior was established.   
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Uniformly distributed noise is added to the Nicholson Bailey model and the 

stability of the system is studied. This extensive study of the Nicholson Bailey 

models produced several significant results in terms of periodicity and chaotic 

behavior. The bilateral symmetry in the dynamics of the system was noticed by 

extending the range of parameters from positive real numbers to entire real line. 
 

The discrete versions of the Rosenzweig-McArthur model under both prey and 

predator perspectives were studied. Local stability analysis was conducted at 

fixed points. It was observed that the system possess attracting limit cycles 

under predator perspective for negative parameters and no such attracting limit 

cycles for negative parameters were observed under prey perspective.         
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