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ABSTRACT 

The technological necessity for Hypersonic Vehicles grows as Humanity expands 

its reach into Space and creates a demand for fast global transportation across large 

distances through the Earth's atmosphere. Access to Space with cargo on demand, 

fast travel to faraway locations on Earth, reliable, cost-effective, and routine access 

to Space: all of these are feasible with the help of Air-breathing Hypersonic 

Vehicles (AHVs). AHV’s has long been recognized for its potential to enable both 

advanced military and efficient access to Space. Recognizing the potentially large 

benefits of this technology and the magnitude of the efforts to develop this 

technology, has attempted to lay out a high-speed Hypersonic Technology 

roadmap. Single-Stage-To-Orbit (SSTO) AHV under consideration, present 

significant challenges in many technological areas and especially in the area of 

flight control.  

AHV vehicle’s historical development of Hypersonic Vehicle model shows that the 

Winged Cone is established model and is considered for this research. AHV 

Winged Cone model is developed with 3DOF AHV longitudinal dynamic model 

with propulsion model of Turbojet, Ramjet, and Scramjet, and with Rocket 

propulsion system incorporated into the model. The AHV model presents the 

different operating flight regimes for 3DOF nonlinear model and 6DOF linear 

model development. The aerodynamic model is developed for the entire AHV flight 

regimes with Mach Number (M), 0 to 24. AHV longitudinal trim and stability 

assessment is performed using dynamic simulation considering different operating 

conditions and different sonic velocities. Stable simulations are achieved for 

different cases of trim simulation of AHV model for M=0.9, M=6 and M=10, and 

for M=4, M=15 and M=24 shows unstable behavior. Dynamic simulation with trim 

condition is considered for variable control surface deflection for 𝛿e and 𝛿r 

deflection. Flight dynamics and stability analysis for 3-DOF AHV dynamic 

simulation model is performed with Bifurcation Method using AUTO-07p 

platform. The Method shows that the parameters used for the different systems with 
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their dynamic model shows that elevator deflection 𝛿e is mostly considered as the 

BP (Bifurcation Parameter). CBA is implemented for the Longitudinal dynamics 

AHV model at M=0.9, for different choices of elevator deflection and with the aim 

to observe the control effects for different elevator deflection, 𝛿e = -120 and 120. 

Bifurcation Diagram is obtained for data points with different forward and 

backward runs with the different iterations, shows the parameter values of 𝛼, θ 

and 𝑞. Linear AHV model is developed and is considered for steady and wing level 

flight condition operating at level and straight flight condition for velocity M=5 and 

altitude of 65000ft (19812m). The linear model obtained is decoupled from the 

longitudinal and lateral system interactions. This linear model is analyzed for open 

loop dynamic simulation for different inputs 𝛿a and 𝛿r deflection. The pole-zero 

plot of the model shows nonminimum phase for the poles and zeros, which results 

in system unstable. Hence, control design is implemented using state feedback 

architecture for the AHV dynamic model. The dynamic stability of the model is 

investigated, and state feedback control using pole placement is implemented to 

attain the stability of the model.  

This research presents modelling, simulation, and aerodynamic model development 

of dynamic 3-DOF longitudinal AHV model. The nonlinear aero data model is 

developed for entire flight regime of hypersonic flight from 𝑀 = 0.9 𝑡𝑜 24. The 

dynamic stability investigation with selected 𝑀 = 0.9, 4, 6 and 24, is performed 

considering the Bifurcation Method. This study provides eigen values, based on 

which the stability analysis is considered. It is seen that at the Mach number, 𝑀 = 

0.9 𝑎𝑛𝑑 6 shows short period mode and 𝑀 = 4 𝑎𝑛𝑑 24, shows the long period mode 

presence. Results presented here with Bifurcation Analysis shows a promising 

method for stability analysis for various trim points under consideration. This study 

presents the research for achieving Hypersonic Flight in near future. The coming 

decades will prove and outcast the research and development of AHVs with the 

involvement of high interest of the Nations to achieve the Hypersonic Technology, 

and hence could provide routine flight between Earth and Space. 
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CHAPTER 1 

INTRODUCTION  

One potential answer to the problem of how to make space travel more 

accessible and economical is Air-Breathing Hypersonic Vehicle (AHV). The 

possibility of SSTO (Single-Stage-To-Orbit) and TSTO space missions, as 

well as long-range cruise missions, will make use of AHV technology in the 

future increases. Recently, AHVs have gained widespread interest due to their 

ability to connect the fields of aviation and space exploration, and because of 

their speed, attitude, quick military response, lengthy duration, and powerful 

penetrating ability, they have bright prospects in both the military and the 

civilian sectors. Advantageous uses for AHVs include the facilitation of high-

speed commercial aviation and the reduction in the cost and risk of LEO space 

missions. Accomplishment of NASA's Programme demonstrates how the 

demand for safe, affordable space travel for civilian and military uses has 

redirected attention to hypersonic technology. Both military and commercial 

communications interests in the area are actively monitoring its development. 

1.1 MOTIVATION AND OVERVIEW 

AHVs have drawn international attention and is seen as a possible solution in 

making affordable and routine space flight, quick military response; and 

allowing for high-speed commercial air travel, reliable space missions to low 

Earth orbit, and low-cost cruise missions with great range. Developing the 

need for rapid global transportation over long distances through the atmosphere 

of the Earth, this connects aeronautics and astronautics and has promising 

military and civilian applications. The SSTO and TSTO space missions, as well 

as long-range cruise missions, are only two examples of where AHV 

technology could be useful. 

The developments of the airplane, rocketry science and other space application, 

exclusively afterward Second World War led to outgrowth of new era of 
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Hypersonic. All common public, engineers, scientists and space lovers, have a 

dream of flying to orbit and into space. As rockets have conquered the space 

launch for the last five to six decades, hypersonic air-breathing systems have 

potential to achieve this in near future. Hypersonic vehicles with high Mach 

can prove an appropriate platform for the second stage rocket and capable of 

SSTO over the coming decades. Investigation for the AHVs commenced during 

1960’s and was persistent over 1990’s followed by US hypersonic programs. 

The development of an operational AHV will involve most important 

developments in propulsion technology, multidisciplinary modeling and 

simulation, and design benchmarks. On the development and research front of 

AHV, the focus is on the propulsion and engine technology so that hypersonic 

flight and wide-range speed in different sonic and hypersonic regimes can be 

achieved. Analysis provided by the US NASP (National AeroSpace Plane) and 

Hyper-X Programs reveals that the key technologies are needed for Hypersonic 

Transportation to be achievable in an efficient manner and are required to be 

addressed.  

 

Fig. 1.1 The Hypersonic Confluence [1] 

A significant concern is of the control methods and its design for the distinctive 

features of the AHVs must be prudently deliberated in association with the 

typical aircraft. Figure 1.1 exhibits blend of the Ballistic Missiles, Space 

Projects, Aeronautics Projects, and the Hypersonic Projects indicating the 

research programs development in [1]  over the decades. 
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Over the last 40 years substantial developments in hypersonic technology have 

been carried out addressing the hypersonic engine, airframe and integrated 

system and many others. One of the critical technologies required for the AHVs 

flight success is propulsion technology. Vehicles having air breathing 

capabilities with the propulsion system have the range of flight at 30 km to 50 

km altitude for the extended time frame during the flight. Thus, this propulsion 

system must maintain the low altitude flight to attain the high dynamic pressure 

for better engine performance and to maintain sufficient intake of the air for the 

air-breathing engines. All the vehicles developed undergo extreme thermal 

loads, which are required to have advanced Thermal Protection System (TPS). 

Unlike the conventional aircraft, AHVs require a propulsion system which can 

be highly integrated into the vehicle design. Figure 1.2 shows the operation 

range of the engine possibilities as stated in [2] of the system reliant on the fuel 

as a choice for the air-breathing propulsion. The termination of NASP in initial 

years of 1990’s, but investigation in the scramjet technology continued. To 

achieve hypersonic flight, it is apparent that combined propulsion technology 

would be required. Combination of propulsion cycles can be accomplished with 

high speed and for Mach 5 and beyond, with combined cycle of turbojets, 

ramjets and scramjets can be used. 

 

Fig. 1.2 Engine possibilities based on Mach number [2] 
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The NASA Hyper-X program emphases the paramount aerospace research 

encounters of the AHVs flight. The major assignment is to develop a vehicle 

which can achieve high-speed between Mach 7 to 10 without any rocket. The 

SR-71 called as Blackbird is designed with manned air-breathing capability that 

cruised to Mach 3.2 proving the world’s fastest aircraft in 1960’s as stated in 

[3], and NASA’s X-15 accomplished Mach 6.7 speed in the year 1967. 

The technologically advanced X-43A (Hyper-X initiative) is designed to aim, 

to conduct and establish strategic propulsion interrelated technologies for 

AHVs by NASA associated research centers. The US National Aerospace 

Initiative (NAI) have illustrated the history of the flight from the 1960 to the 

present flight speed of the vehicles and the hypersonic technology development 

and demonstrations as stated in [4]. The program's ultimate goal is to show a 1 

Mach gain in annual persistent flight by 2012. The challenges and the difficulty 

with the aerodynamics of the hypersonic vehicles describe the different 

aerodynamics phenomena in [5] that take place at different altitude and flight 

speeds. It shows the aerothermodynamics design requirements for the major 

types of hypersonic space transport vehicles with minimal trajectories as 

winged Re-entry Vehicles (RV), Hypersonic Cruise Vehicles (CV), Ascent and 

Re-entry Vehicles (ARV) and Aero-assisted Orbit Transfer Vehicles (AOTV).  

In 1995 US AFRL started the HyTech (Hypersonic Technology) Program and 

with the cost-cutting and lack of support, USAF initiated HySTP (Hypersonic 

Systems Technology Program) as stated in [5]. The HyTech aimed for the 

development of the hydrocarbon led scramjet technology upto Mach 8. In 1998 

ARRMD (Affordable Rapid Response Missile Demonstrator) program in [6] 

was DARPA (Defense Advanced Research Projects Agency) initiated which 

got terminated in 2000, and other initiatives of vehicle concepts like HyFly 

(Hypersonic Flight Demonstration) and SED (Scramjet Engine Demonstrator), 

as stated in [6] were promoted and initiated. NASA successfully conducted the 

flight demonstration of the investigational X-43A using Scramjet Technology 

in 2004 and 2005. With the advancements of the AHV over the years, the X-51 

SED made its first flight in the year 2009. The Falcon HTV (Hypersonic Test 

Vehicle) performed the ‘glide phase’ maneuvers in 2011 to successfully test its 
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aerodynamics. The X-51A US Air Force’s waverider design achieved the Mach 

5.1 flight speed during the test. 

1.2 Introduction to Hypersonic Vehicle  

Vehicles travelling at Mach 5 or faster are known as AHVs. With that kind of 

velocity, a safer, cheaper, and more efficient method of space travel can be 

introduced. As a result, many advanced nations are investing heavily in risky 

research into hypersonic vehicles. When it comes to moving from theoretical 

foundations to practical engineering applications, the control system design of 

AHVs continues to be a pressing bottleneck. To make air-breathing hypersonic 

flying practical and efficient, controller design is a critical issue.  

The lifting body of an AHV is long and slender, and its leading edge is sharp 

to reduce drag. Structural dynamics, the propulsion system, 

aerothermodynamics, and the control system are the four main functional 

subsystems that make up the AHV model. Each of these subsystems has two 

secondary coupling effects due to interactions with other subsystems. As a 

result of the interaction between the structure and the control system, 

servoelastic effects occur; as a result of the interaction between the structure 

and the propulsion system, aeropropulsive effects occur; as a result of the 

interaction between the aerothermodynamic flow field and the propulsion 

system, control actuation is reduced; and so on. Non-minimum phase behavior, 

aeroservoelasticity, aerothermoelasticity, and low-frequency oscillations in the 

vehicle's dynamics are all secondary effects that emerge as a result of the 

interplay between these main causes. The model characterizing an AHV's 

dynamics lies at the centre of these four tertiary effects. 

The US National Aerospace Plane has been conducting study on AHV 

technology since the 1960s. Despite the extensive study, it is generally agreed 

that significant breakthroughs for propulsion engine technology and material 

technology, as well as refined transdisciplinary modelling and design 

techniques, are necessary for the creation of a fully functional vehicle. 

Hypersonic speeds, or the ability to switch between subsonic, supersonic, and 

hypersonic flight regimes, were once the primary focus of air-breathing 
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hypersonic research, which led to the creation of ramjet and scramjet engines, 

as shown in Table 1.1.  

Table 1.1 General Plane Characteristics for Different Flight Regimes 

 

Hypersonic transportation is a promising new mode of transportation, however 

research conducted by the National Aerospace Plane (NASP) and the Hyper-

X Programmes have revealed that additional critical technologies are needed 

to realize its full potential. It's important to take into account the differences 

between AHVs and conventional planes while designing the controls. 

Hypersonic air-breathing vehicles differ significantly from ordinary aircraft in 

which propulsion technology must tightly be incorporated with the vehicle. 

Research on scramjet-powered flight continued, albeit on a much lesser scale, 

after the National Aerospace Plane was scrapped in the early 1990s. Some 

projects were designed to prove the viability of individual technologies crucial 

to achieving sustained hypersonic flight.  

One of the most difficult problems in aeronautics research is the flight of 

AHVs, and NASA's newest multi-year research programme, Hyper-X, is 
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dedicated to this issue. Since the current record holder for fastest air-breathing 

aircraft, the SR-71, cruises just above Mach 3, and in 1967, the X-15, powered 

by rockets at NASA, reached a top speed of Mach 6.7, creating aircraft capable 

of Mach 7 and Mach 10 speeds is the major mission. NASA's Hyper-X 

Programme, run out of the Dryden and Langley Research Centre’s, has as its 

primary objective the demonstration and flight validation of essential 

propulsion and related technologies for AHVs using the specialized prototype 

(X-43A) built for the job. 

Recent examples include NASA's 2004 and 2005 flights of the X-43A, a 

technology demonstration powered by scramjets. The X-51 first flight using 

Scramjet Engine Demonstrator is arranged for the latter part of 2009. The X-

43A, an experimental plane developed by NASA, has proven the viability for 

scramjet. During 2011, unmanned HTV (Falcon Hypersonic Test Vehicle's) 

'glide phase' maneuvers were performed to examine the aerodynamics, and 

during test connection was lost. More than five times the speed of sound was 

reached on the final test flight of a hypersonic experimental aircraft on May 1, 

2013. The Air Force X-51A Waverider reached a high speed of Mach 5.1 

during the test flight, covering more than 230 nautical miles in less than six 

minutes before deliberately crashing into the Pacific Ocean off the coast of 

California. 

1.3 Flight Dynamics Analysis 

Flight dynamics analysis can be broken down into three distinct types of 

methods: analytical, computational, and experimental. The analytical tools are 

the same approaches of applied mathematics that are utilised in other areas of 

mechanics. Stability, autonomous control, stochastic processes, and 

optimisation are all parts of system theory, a growing topic of practical 

mathematics. In order to achieve controlled flight, vehicle stability is required 

but not sufficient. In various regions of their flight regime, even the best 

aeroplanes have experienced some degree of instability, while vehicles that are 

entirely stable may have poor handling. Stability boundary determination for 

nonlinear and time-varying systems requires extensive analytical and 

computational effort, which may not be justified by the importance of dynamic 
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performance criteria. When computing stability of small disturbances from a 

steady state, the linear eigenvalue problem that is typically a part of the system 

study can be very helpful and may provide enough information about stability 

from a practical standpoint. From a computational standpoint, the most salient 

truth is that, in the last several decades, the availability of machine computation 

has completely revolutionised the way this field is actually practised. System 

performance, system design, and optimisation issues that were once intractable 

are now routinely dealt with. 

The experimental methods used in the study of flight dynamics are largely 

novel. The first category includes aerodynamic input finders. The world's 

leading aerodynamics labs now have access to wind tunnels and shock tubes 

that replicate realistic flying conditions. Aeroballistics ranges, rocket-boosted 

and gun-launched free-flight model techniques, and conventional laboratory 

apparatus are all available for dynamic experiments. The proliferation of these 

broad infrastructures has coincided with the proliferation of a wide variety of 

sensors and equipment, primarily electronic, for measuring forces, pressures, 

temperatures, acceleration, angular velocity, and so on. Aerodynamicists' 

reliance on experiment has been greatly diminished by advancement using CFD. 

In many cases, wind tunnel studies are no longer necessary because CFD 

calculations can provide the same information. Verification of the CFD codes 

themselves, through comparison to experiment, is, of course, essential. 

Second, the flight dynamics study makes heavy use of a flight simulator, which 

is an experimental tool. The focus of his research is on how well the pilot 

complements the aircraft. For completely novel air travel scenarios, this is a 

mandatory first step. Long before the prototype stage, the pilot's control over 

the vehicle must be guaranteed. While research into mathematical models of 

human pilots has led to some promising findings, it is still impossible to do this 

without actual flight testing. In addition to being an effective instrument for 

educating new pilots on the latest and greatest aircraft models, the specialised 

simulators that have been developed for them have also proven useful as a 

research tool for investigating vehicle handling attributes and pilot dynamics. 

The time and money required to teach pilots to fly new types of aeroplanes has 

been drastically cut thanks to the advent of high-fidelity simulators. 
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1.4 Bifurcation Method Analysis to Aircraft Dynamics 

Implementation of bifurcation techniques for study of flight dynamics dates 

back to late 1970s and beginning in early 1980s with the publishing of the first 

works in the open literature. The field of flight dynamics received a much-

needed boost from bifurcation approaches, which bridged the gap between 

trivial change in linear approximation to nonlinear six degrees-of-freedom 

simulation. Numerous nonlinear occurrences are of great magnitude to battle 

dynamics have been studied systematically and effectively thanks to the advent 

of bifurcation methods as stated in [7]-[8]. However, after 30 years, clearly, 

other branches of aerospace engineering have not adopted bifurcation 

approaches or become standard practise when designing aircraft systems. Most 

aerospace engineers still think of bifurcation methods a nonlinear investigation 

technique of combat dynamics. 

1.4.1 For Flight Dynamics Application 

Analysis of flight dynamics pre-bifurcation approaches relies on, firstly, 

analysis of linear stability at a given trim state, and secondly, the transition 

between trim states and the overall transient response is identified via nonlinear 

simulation. Obviously, we require a trim procedure to identify the trimming 

conditions. By employing a continuation algorithm, bifurcation techniques 

standardised and mechanised the computation of trimming conditions with 

stable property across broad selection of inputs. In addition, the method 

approach gives us common dialectal to talk about a wide range of nonlinear 

phenomena in [9]: we can talk about jump occurrences with transitions as of 

saddle-node points, and we can talk about periodic-oscillations as limit cycles 

that start with Hopf points. Although time history simulations is required, so 

that it can perform selective and strategically using data gathered using method 

implementation. Advent of bifurcation techniques is watershed moment in the 

evolution of flight dynamics. It is accurate to state that the bifurcation marked 

the beginning of a new era in the study of battle dynamics. Nonlinear dynamical 

flight phenomenon prediction is where bifurcation approaches have proven to 

be most useful. Bifurcation analysis allowed for the early prediction, onset 

explanation, and dynamics understanding of spin, wing rock, and inertia-
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coupled roll motions. Therefore, bifurcation methods became well-known as an 

effective instrument for analysing the stability of flight dynamics, particularly 

for high angles-of-attack. Considerably, it has become synonymous with this 

specific use case, and it is not uncommon for individuals who are not familiar 

with the topic to reject it as a "high-alpha tool." 

1.4.2 For Control Study Application  

Bifurcation techniques have also made strides in the design of flight controls 

and control systems as stated in [10]-[11]. Bifurcation approaches, from the 

perspective of the control designer, reveal details concerning, firstly, the 

existence and stability of fundamental equilibria and aims to deliberate the 

reassignment of stability of these equilibria, and secondly, other trimming states 

with steady conditions with respective branches. States which is undesirable, 

are attempted to prevent them from occurring; but, if the control system is 

saturated, they become possible. the degree to which they can be perturbed 

before the system loses its stability characteristics is indicative of the control 

design's robustness. This is the zone where the control designer can use his or 

her imagination to make use of bifurcation techniques during the design and 

evaluation of controls. 

Considering control designed for linear dynamical systems using local 

consideration produces numerous operational sites are still widely used in 

designing FCS. Gain scheduling is used to knit together a network of local 

controllers that can exert influence over the full flight envelope. By doing so, 

the controller design is approximatively taken into consideration for 

nonlinearities in the flight dynamics of the aircraft and changes in system 

attributes for operating conditions. Numerical continuation with bifurcation 

analysis can be used to create a gain scheduled control law. Since most designs 

for control laws only ensure local properties, bifurcation method is implemented 

for test and control-law aimed at secondary steady states. As such, it can provide 

a groundwork representing enhancement of flight envelope limiters. Using 

aerodynamic derivatives as continuation parameters to assess susceptibility to 

parametric uncertainties and ensuring closed-loop stability in regions outside of 

those for which the control rule was created, are two examples of how 
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bifurcation analysis can be used to assess robustness. The zone of attraction can 

be roughly estimated by determining the next steady-state (equilibrium, limit-

cycle) surface. 

Control designer toolkit is still missing its implementation using bifurcation 

methods, despite their obvious use. This may be due to the fact that bifurcation 

approaches, is still considered a tool for time domain analysis of nonlinear 

systems, and do not mesh well with the frequency domain (primarily PID) 

methods that have traditionally been used for flight control design. PID control 

design often uses frequency domain parameters, however bifurcation analysis 

communicates with eigenvalue analysis, even if stability is a shared goal.  

One probable explanation for bifurcation methods' lack of adoption in the field 

of combat control design is the common belief that they are only useful for 

problems with large initial conditions. However, as mentioned before, spin 

recovery, upset/loss-of-control recovery, and flying envelope limiters are all 

possible applications of bifurcation algorithms. 

Integration of bifurcation approaches and control system design methodologies 

is urgently needed, especially in the frequency domain. In most control systems, 

robustness measurements in the frequency domain are readily available and 

easily verified, in contrast to the time domain. This is one of the key reasons 

why control system engineers prefer using frequency domain methods, as well 

as pointing out how important it is to have reliable strategies for converting 

frequency domain criteria into their time domain analogues in order to spread 

the bifurcation approach among control engineers. As algebraic equations, 

numerical continuation algorithms may easily handle these criteria. This method 

is analogous to that of computing manoeuvre cuts and applying continuation to 

solve optimisation difficulties. 

1.5 Research Objectives 

The study's primary aims are: 

 Validation of Dynamic Model of Generic AHV. 

 Bifurcation Analysis of Longitudinal Dynamics of Generic AHV for 

different Operating Flight conditions.  
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 Flight Dynamics Analysis of Generic AHV for different sonic velocity 

conditions. 

 Flight Dynamics Analysis of Generic AHV for different Control Inputs.  

1.6 Research Methodology 

Creation of resources and methods to aid in conducting the research at each step, 

such as modeling & simulation, bifurcation analysis, control design, validation 

is carried out.  Create control-relevant modes of varying complexity and 

dependability for use in optimizing, analyzing, and validating vehicle 

controllers.  To provide vehicle simulation for support of advanced control 

methods design and analysis. Create a simulation environment where models 

can be incorporated in a consistent and modular manner for maximum benefit 

from the simulation. Inaccurate predictions of the hypersonic flight regime's 

aerodynamics, propulsion, and control coefficients are the primary cause of the 

type of uncertainty anticipated for the hypersonic vehicles' dynamics.   

 

*Bifurcation results of negative Angle-of-Attack of numerical computations 

which are not related to study. 

Fig. 1.3 Methodology Flow Chart 

Control Design of AHV for the limiting Cases of Mach number

Quantitaive Stability Analysis using Linearized Eigen Values obtained from 
Bifurcation & Continuation results of different Cases

Bifurcation Analysis of Longituidnal Dynamics of AHV for different Mach 
number of limiting stability* Cases for Qualitative Analysis

Simulation for different Cases of Mach number=0 to 24

Trim Analysis of 3DOF for Mach number=0 to 24 for different δe deflection

3DOF Dynamic Simulation for Dynamic Trim & Stability Analysis of AHV 

Identification of Aerodynamically Static Stable/Unstable limitting Cases (regions) 
from the generated AHV Aero Data.

Aero Data Generation of AHV from empericial relation as stated in [12]-[13]
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Nevertheless, hypersonic vehicle controllers must ensure system stability and 

deliver satisfactory control performance. The non-linear AHV model is 

analyzed using the Bifurcation Method for the various continuation techniques 

to generate the Control Law for large envelop flying situations. The software 

packages like MATLAB, Simulink and AUTO-07p will be used to perform the 

Modeling, Simulation and Bifurcation Analysis using the Continuation Method. 

The software packages like MATLAB, Simulink are used to perform the 

Modeling and Simulation, and AUTO-07p for Bifurcation Analysis using 

Continuation Method, as stated in [14]. The methodology carried out for this 

research is represented using Fig. 1.3. The methodologies used for the different 

stages of the research can be categorized as -  

 Mathematical Modeling & Simulation 

 Bifurcation Analysis  

 Flight Control Systems 

1.6.1 Mathematical Modeling & Simulation 

Choosing which physical variables and interactions are insignificant and crucial 

for the correctness of the model is the first step in arriving at a properly reduced 

model. It is common practice to begin with a basic model in order to get a feel 

for the answer, and then proceed to a more detailed mathematical model for a 

thorough investigation.  

 

Fig. 1.4 Model Development and Simulation [15] 
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To simplify a model, however, one must prioritize which physical variables and 

connections are essential for the model's accuracy. The preliminary stages of 

creating something devoted to the development of a modelling environment 

useful to control engineers in understanding multifaceted relations amongst 

aerothermodynamics, propulsion, control, and structural dynamics designed for 

specific arrangement.  

To establish feasible equations of motion and to combine the complete flight 

dynamics, elastic property, and propulsion dynamics for the modeling to obtain 

the non-linear model. Winged-cone Configuration of the AHV is used for this 

analysis and nonlinear system approach used for mathematical modeling using 

the procedure shown using Fig. 1.4 with Fig. 1.5. 

 

Fig. 1.5 Modeling and Simulation Flow [16] 

1.6.2 Bifurcation Method 

There are several nonlinear phenomena that factor heavily into the workings of 

dynamics of flying that may be studied effectively using bifurcation analysis, 

and flight control is one of these domains. There is great potential for bifurcation 

methods to enter the aviation design process and dramatically improve it. The 
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non-linear AHV model's performance in its many flight regimes is analyzed 

using the Bifurcation Method. Non-linear behavior will be analyzed using 

Bifurcation of the dynamical system, which shows all critical points where 

equilibrium results in change in the stability. 

Types of Bifurcation can basically be classified as two kinds of bifurcations: 

static and dynamic. Crossing the imaginary axis by a system's real eigenvalue, 

a static bifurcation occurs between a set of trim points. For instance, a) a saddle-

node bifurcation' (Fig. 1.6 b) wherein the increase in trimming state undergoes 

a transition. i.e., 2 trim positions, 1 stable with 1 unstable, appear or depart with 

change in control parameter, b) a 'pitchfork bifurcation' (Fig. 1.6 c) is combined 

in variation with trimming point changes, that is, stable (unstable), trim loses 

(gains), stability with 2 new stable (unstable) trim are created, with symmetric 

and near to original trimming point, and c) a 'transcritical bifurcation' (Fig. 1.6 

d), between a trimming point convergence (divergence) oscillation occurs with 

stable (unstable) limit-cycle is a dynamic occurrence. For instance, a single 

stable trim point associated with a Hopf Bifurcation (HB) point (Fig. 1.6 f) 

transitioned with un-stable trimming occurrence exhibiting stable periodic-

oscillation. Periodic oscillations, also known as limit cycles, begin at HB. 

Bifurcation Methodology needs first-order ordinary differential equations to 

represent a dynamical system as, 𝑥̇ = 𝑓(𝑥, 𝑈), where 𝑥, 𝑈, 𝑓 are vectors of 𝑛, 

𝑚 state variables, control parameters and as nonlinear mathematics functions 

respectively. Typically, the bifurcation method, in implementation 1 parameter 

is changed in time considering others remain constant. Take u to a constant 

control-parameter that needs change, and P is set to (m-1) static control-

parameter. Therefore, keeping tabs on all the possible trim states 𝑥∗ is essential 

for the bifurcation method such that 𝑓(𝑥∗, 𝑢, 𝑃) = 0 is fulfilled. The 

continuation approach is used to allow the free control parameter u to be 

adjusted within bounds while holding the fixed control parameter P constant. 

Continuation Algorithms: depends on proposition called implicit function, 

demonstrating that a nonsingular occurring at (𝑥଴, 𝑢଴, 𝑃) for the systems state 

variables with reference to the Jacobian matrix, the system can be solved by a 

sequence of linear equations, then there exists a neighborhood around 
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(𝑥଴, 𝑢଴, 𝑃), so that there is an u nearby for every other u that is 𝑢଴ +

𝛥𝑢, 𝑓(𝑥, 𝑢, 𝑃) = 0 with unique result. 

 

                 

                                   (a)                                (b) Fold or Saddle-node bifurcation 

                            

          (c) Pitchfork bifurcation (Super critical)       (d) Transcritical bifurcation 

                             

                                 (e)                                  (f) Hopf bifurcation (Super critical) 

Fig. 1.6 Types of bifurcation (trim occurrence) (line - stable, dashed-line - 

unstable, empty-square - static point, solid-square - Hopf point) [17] 
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An algorithm that keeps going to perform an SBA, the public can use the free 

software package AUTO2000. To determine all potential trim results for system 

considering one free control parameter remains adjusted though the others are 

held constant, the SBA technique employs a continuation algorithm. The local-

stability details indicated using each trim point is likewise computed by the 

continuation algorithm. 

Bifurcation Diagram: Global performance of a system can be represented by its 

bifurcation diagram, which is a two-dimensional projection for calculated trim-

solutions with the relation with variable control-parameter. The 'Bifurcation 

Points' for branch with trim results occur with the nodes at which the branch 

loses stability. Unstable dynamical behavior can occur at bifurcation points, 

which are associated with the transition across the complex plane's left-to-right 

axis for system eigenvalues. 

Analysis Procedure involved in the Bifurcation Method can be summarized as 

follows: 

 Represent the dynamical system as a set of first-order ODE’s. 

 Fix all parameters but one (continuation parameter) 

 Determine equilibrium states and their stability with a changing 

continuation parameter using a continuation algorithm. 

 Repeat the steps for the various values of the fixed parameters. 

 Use bifurcation diagram to infer global dynamical behavior. 

 

Advantages: The benefits of using a bifurcation analysis method are: 

1. It is equally straightforward to investigate any high-order dynamical system 

𝑥̇ = 𝑓(𝑥, 𝑈) for a variety of nonlinear functions f. For example, to do a 

bifurcation assessment for aircraft equipped through CAS, heavily 

envhanced aircraft models are investigated. 

2. With the help of bifurcation analysis, we can determine that there are several 

coexisting trims states 𝑥∗ for a given value of u and P. 

3. Bifurcation analysis is greatly aided by the continuation algorithm's capacity 

to calculate data on the trim and periodic solution's local stability at each 

iteration. 
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4. Diverse bifurcation corresponds to the initiation of distinct state dynamics; 

therefore one can use bifurcation study to foresee how the system will act; 

for example, one can use the Hopf bifurcation to predict wing rock or an 

unstable phugoid, and one can use the pitchfork bifurcation to predict a 

departure in flight dynamics. 

1.6.3 Flight Control Systems 

For many reasons, flight control problems for Hypersonic Vehicles goes far 

beyond the difficulties encountered with the previous aircraft and spacecraft 

designs. The control obstacles such as with the other high-performance aircraft 

like, hypersonic vehicles dynamics exhibit a nonlinear, multivariable, time-

varying, non-minimum phase type of behavior. Most of the analysis will have 

to be best approximated such that FCS of the AHV will possibly have to operate 

using a simplified model of the system which includes some uncertainty in the 

parameters. Approaches and control methods which can be used for this 

advanced control, should recognize the change in dynamics and adapt to these 

changes in real time application. Advanced control design techniques can be 

used to design and handle the non-linear complexity of the problem. An 

adaptive method can be used for designing the controller for the nonlinear flight 

dynamics. Intelligent control techniques can be designed to provide robust flight 

control using optimization techniques, and guaranteed stability of the system. 

AHVs dynamics and control presents a major concern with the FCS design due 

to the dynamic behaviour and extremely coupled nonlinear nature. AHVs 

control design should provide stability to the FCS and, consistent performance 

and robustness, as AHVs are enormously subtle to atmospheric conditions and 

aerodynamic parameters. Control design performance is difficult to achieve 

with the best performance with all the flight regimes and flight conditions, and 

so the control design schemes need to be adaptive. In the open literature, mostly 

longitudinal dynamics of AHV is used for the hypersonic flight analysis for 

control design, as it is unstable, has non-minimum phase and has model 

uncertainty. For the control system design, models like longitudinal dynamics 

model, control-oriented model and 6DOF rigid-body model, and other different 

models discussed in the previous section are used for the stability and controller 
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design. The different controllers designed for the AHVs can be broadly 

characterized and represented using Fig. 1.7. 

 

Fig. 1.7 AHV different control techniques 

1.7 Thesis Organization 

Thesis outline of this research is categorized with seven chapters. This chapter 

presents the overview and introduction to the Hypersonic Vehicles. It shows 

how Bifurcation Method can be used to implemented, and analysis for flight 

dynamics and control analysis as a tool. It also highlights the research objectives 

of the work with research methodology carried out.  

Chapter 1 presents introduction to the research and background of Air-breathing 

Hypersonic Vehicle with flight dynamics analysis overview. It also presents 

Bifurcation Method Analysis to flight dynamics and control analysis 

applications and introduction. It outlines the methodology used for the research 

objectives as mathematical modelling and simulation, bifurcation investigation 

with controller design. 

Chapter 2 features literature review for different Air-breathing Hypersonic 

Vehicle models used over the decades, its flight control system design with 

different classical and advanced control techniques, and Bifurcation Method 

implementation to different aircraft models. 

Chapter 3 presents dynamic AHV model introduction, description, and model 

development. It also outlines the development of 3DOF nonlinear model and 
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6DOF linear model with the aerodynamic model. It discusses the AHV 

propulsion model development and different operating flight conditions 

consideration and, with the validation of the model.    

Chapter 4 presents Flight dynamic analysis for different sonic velocity 

conditions using high-altitude with Mach number. It also presents the nonlinear 

simulation of the generic AHV, model trim analysis and flight dynamic stability 

of the model using trim analysis. 

Chapter 5 presents the bifurcation analysis of generic AHV for longitudinal 

dynamics and its implementation using AUTO-07p software platform. Flight 

dynamic analysis for different operating conditions using bifurcation method is 

carried out. 

Chapter 6 presents the closed loop simulation of the AHV model and flight 

dynamic analysis for different control inputs. It also presents the open loop 

simulation with stability analysis followed by control design using state 

feedback method.  

Chapter 7 provides conclusion and summary of the research findings, as well 

as its significance to the Hypersonic Technology. It also outlines the limitation 

and future research in context to society benefit and developments to achieve 

SSTO flights in achieving LEO and other Space missions.  
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CHAPTER 2 

LITERATURE REVIEW  

The development phase for an AHV has restarted multiple times, with each 

project addressing a different difficulty. This has spawned some truly excellent 

writing on the subject, but it has also left some glaring gaps between the 

decades in which the topic has been revived. In the 1960s, researchers sought 

to perfect a rocket-powered launch vehicle resembling a wave rider. Although 

rocket propulsion was set to be replaced by the advent of scramjet engines in 

the 1970s. It took another two decades to perfect the scramjet program, which 

was already an extremely ambitious endeavor. The many obstacles presented 

by scramjets had to be overcome once they were accepted as a practical choice. 

The aero-propulsive effects challenge was tackled first in the 1990s. However, 

the aerodynamics could only be modelled using Newtonian impact theory, and 

the structural modelling was limited to a free-free Euler-Bernoulli beam. 

Propulsion system modelling shifted from adding heat to a dual-mode scramjet 

through a constant-area, frictionless duct, and aerodynamics modelling 

progressed from Newtonian impact concept to oblique shock theory with 

viscous effects.  

Design stages for AHV has undergone multiple iterations, with each phase 

tackling different challenges. This has generated a lot of writing on the subject, 

but the topic has been rebooted so many times over the years that there are still 

some information gaps. The development of a rocket-powered wave-rider 

launch vehicle was a top priority in the 1960s. Emphasis shifted to scramjet 

based propulsion in 1970s as a replacement for rockets, but it took another 20 

years to perfect them. Once scramjets became a viable option, the next 

challenge was to address their various issues. The aero-propulsive effects were 

studied in the 1990s, however only a simple Euler-Bernoulli beam was 

modelled for the structure, and Newtonian impact theory was used for the 

aerodynamics. There has been a lot of development during the previous two 
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decades for AHV modeling. Aerodynamics modeling has evolved to include 

viscous effects and oblique shock theory, and with heat added to a frictionless 

conduit of constant area, the modelled propulsion system has developed into a 

dual-mode scramjet engine. 

2.1 Historical Developments - Hypersonic to AHVs 

This section describes advancement to hypersonic technology and models from 

inception. Conception of hypersonic flight appeared in late 1930s, and Eugene 

Sanger with his wife Irene Bredt realized the first conceptual hypersonic design 

with rocket powered using enhanced glide design called as Silbervogel (Silver 

Bird) as stated in [18] in 1938, is shown in Fig. 2.1 (a). It was developed as 

space transporter and worldwide attack aircraft and was first comprehensive 

investigation and requisite of SSTO hypersonic vehicle. The Sanger-Bredth 

perceptive methodology of global hypersonic flight worked as a benchmark for 

the upcoming hypersonic research, and it led the way-forward for many future 

aerospace vehicle designs. 

Vehicle X-15 design shown in Fig. 2.1 (b) in [19], gave the hypersonic study an 

incremental rise ahead in its time. It features fuselage (long), wings (short) and 

small rocket engines for steering, achieved Mach 6.7 hypersonic speed and 

reached at the edge of the outer space, as stated in [20]. This proved useful for 

the X-15 with a high-altitude hypersonic platform for future research. The 

modified version of X-15 are X-15-1, X-15-2 (later X-15A-2) and X-15-3 were 

used to achieve different research goals in [21]. The program was carried out 

from 1955 to 1968 by the joint effort of the NASA, USAF and US Navy in 

[22]. During its development period the developed hypersonic models of X-15 

was used to design missiles and spacecraft in the later years, such as Space 

Shuttle. X-15 is a mid-wing monoplane, with a slender cylindrical fuselage, 

and with a wedge-shaped vertical stabilizer and was equipped with a unique 

landing gear in [23]. It was the first piloted entry vehicle, as stated in [24] and 

X-15 hypersonic flight research provided current research in rocket propulsion 

technology, like thrust modulation, reusability and rocket engines, and these 

technologies advanced in Apollo and Space Shuttle programs.  
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Vehicle X-20 shown in Fig. 2.1 (c) in [25] represents hypersonic flight with 

boost-glide technology and with delta wing configuration for reusable space 

access.  It was developed as Space weapon system and was called Dyna-Soar 

for ‘Dynamic Ascent’ and ‘Soaring Flight’ in [26]. The X-20 concept initiated 

by Eugen Sanger in the year 1928 and improved in the coming years. The 

program was carried out from 1957 to 1963 by USAF. The program was 

terminated due to political, economic and administrative reasons in 1963. X-20 

was the first boost-glide space-plane program designed for military application 

to space access and for future military piloted space capabilities, as stated in 

[26]. Its objective was to discover and establish maneuverable re-entry of 

piloted orbital space-vehicle resulting in controlled landing at selected landing 

site. The X-20 was equipped with dynamically flying capability, controlled 

equilibrium flight and aerothermodynamic technology with wide-ranging 

maneuverability at hypersonic speeds. It provided a platform for the different 

advanced technologies for the upcoming projects i.e., Space Shuttle and many 

of its subsystem designed into the X-15 research flight. 

Vehicle X-30 was originally considered a feasible study for the SSTO vehicle 

using air-breathing technology with the capability of horizontal take-off and 

landing is shown in Fig. 2.1 (d), in [27]. The program was carried out from 

1986 to 1994 by the joint effort by NASP and DARPA, and was called Copper 

Canyon. The initiative got terminated for the budget reduction and 

methodological anxieties in 1993. The engine configuration includes the 

combined cycle propulsion with the ramjet and scramjet, and tail part of the 

vehicle is attached with the rocket in [28]. X-30 is equipped with tail rocket 

which provides the orbital insertion propulsion and thrust augmentation for the 

atmospheric flight in [28]. X-30 has integrated air vehicle with propulsion 

systems, intricate integrated controls, waverider aerodynamic configuration in 

[29], and is designed to accelerate and achieve LEO with speed of 25 times of 

sound. 

Vehicle SKYLON is SSTO aerospace plane with extremely advanced SABRE 

idea for transportation to LEO is shown in Fig. 2.1 (e) in [30]. The project is 

the new era towards the future advanced space transportation with SSTO 

capability developed by REL using the AHV propulsion technology and 
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SABRE. The program started in the early 1980s to the present date, leading to 

the innovatory pathway to space access and the hypersonic transportation a 

reality. SKYLON engine is incorporation of an air-breathing and with rocket 

engine with minimum replication of the equipment in [30]. SKYLON SABRE 

has increased thrust-to-weight proportion in comparison with the different 

AHV concepts with low specific impulse in [30]. SKYLON SABRE engine 

technology is capable of powering re-usable SSTO vehicles providing efficient 

way to the orbit in [31]. 

Vehicle Hyper-X initiative was started to overcome the dominant hypersonic 

study challenges prominent to AHV developments as shown in Fig. 2.1 (f) in 

[32]. The program started from 1995-1996 by NASA, with a major step in 

scramjet propulsion and in hypersonic research, leading to easy access to space, 

as stated in [33]. The X-43 program successfully achieved the cruising thrust 

at 9.68 Mach. The Hyper-X technology has the prospective to reduce cost with 

high safety and mission flexibility for future SSTO or TSTO access to space, 

as stated in [34]. The X-43A with its Pegasus booster was used to accelerate to 

the speed of Mach 7 and the project was terminated due to the lost control into 

the area of Pacific Ocean, as stated in [35]. The X-43B project was proposed to 

launch with a RBCC and TBCC, by combining both propulsion together to 

achieve Mach 0.7 to 7 hypersonic speed in [35]. The X-43C is a joint project 

with NASA and USAF with dual mode scramjet propulsion design using 

hydrocarbon fuel for hypersonic powered flight accelerating from Mach 5 to 7 

and is premeditated for the future AHV for space.   

Vehicle FALCON program has developed a series of HTV’s, in which the HTV-

3X shown in Fig. 2.1 (g) in [36] uses hydrocarbon fuel and the far term 

FALCON HCV shown in Fig. 2.1 (h) in [36] uses hydrogen fuel. The FALCON 

program started in 2003 by USAF and DARPA, to progress, promote and 

validate the hypersonic technologies which would lead to global reach 

missions. The HTV-3X provided the platform for the needed integrated 

technology for the air-breathing hypersonic aircraft. The FALCON HCV is an 

investigation vehicle with global reach and with reusable space entry 

application. The HTV-3X basic aerodynamic shape progressed from the 

waverider shape of the FALCON HCV. The HTV-3X objective is to create a 
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reusable hypersonic benchmark which employs an integrated AHV propulsion 

system and can accelerate up to the speed of Mach 6, as stated in [37]. 

Vehicle X-51 program shown in Fig. 2.1 (i) in [38] is a scramjet-powered 

vehicle called as SED was started as Hypersonic Technology initiative. The 

program laid its foundation in the mid 1990’s and the X-51A SED started in 

2005, by the joint effort of AFRL and DARPA with a major step in SED-

Waverider vehicle concept, as stated in [39]. The objective of X-51 SED 

program is to achieve the vehicle accelerating speed from boost at 4.5+ Mach 

to 6+ Mach using endothermic hydrocarbon fuel. The X-51A SED is also called 

an AVD due to the inclusion of the cruiser, interstage and booster. The design 

of X-51A with waverider concept was technologically advancement for the 

ARRMD program, it uses JP-7 hydrocarbon fuel and achieved the speed of 6 

Mach to 6.5 Mach, as stated in [39]. 

Vehicle HIFiRE initiative started for investigating the hypersonic flight using 

low-cost flight test approach utilizing sounding rockets, in progress and 

development with the upcoming new generation of hypersonic vehicles is 

shown in Fig. 2.1 (j) in [40]. The HIFiRE flights objective is to understand the 

environments in which the hypersonic flights must operate. The program 

HIFiRE carried out different successful flights in which HIFiRE-4 and HIFiRE-

6 were fully dedicated for the hypersonic guidance and control of the vehicles, 

as stated in [41].  

 

Fig. 2.1 (a) Sanger Silbervogel [18] (b) X-15 [19] (c) X-20 Dyna-Soar [25] 

(d) X-30 [27] (e) SKYLON C1 [30] (f) X-43 [32] (g) HTV-3X [36] (h) 

FALCON HCV [36] (i) X-51A [38] (j) HIFiRE-8 [40] 
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The HIFiRE-4 test primary focused on the flight data collection for 

aerodynamics, control and dynamic stability for hypersonic flight with an 

advanced waverider configuration. The initiative is joint collaboration of 

AFRL, US and with the DST of Australia in [42]. HIFiRE program comprised 

with widespread ground tests and HIFiRE-1 was successfully launched in 

March 2010 using ground launched sounding rocket. 

This section shows the hypersonic development of the different vehicles from 

the 1930’s to till date. Vehicles like X-15, X-20, X-30 have created a 

benchmark for the upcoming model design and developments. From the 1990s 

the pace of hypersonic vehicle development has increased, and it resulted in 

new research developments and different initiatives like Hyper-X, X-51, HTV-

3X, SKYLON and HIFiRE to achieve the modern dreams of hypersonic flight. 

2.2 Flight Dynamics & AHV Model Review 

The research on flight dynamics for hypersonic vehicles in [43] presents the 

different models for winged-cone model like truth model, curve-fitted model, 

control-oriented model and re-entry model, and outlines potential challenges 

for the analysis of large flight envelop, aerodynamic effects, actuators 

dynamics, nonminimum phase and dynamics interaction. The mathematical 

models discussed in [44], shows that only dynamic characteristics are presented 

in open literature, and we need to include the integration and its issues with the 

other sub models. The propulsion model discussed in [45]-[46] with Scramjet 

propulsion shows that the studied configuration provides statically unstable in 

pitch and presents strong coupling in attitude dynamics with engine responses. 

During the past six decades the different flight dynamic models have been used 

for the modeling, simulation, control and stability analysis of hypersonic 

vehicles and are presented in the following section. 

2.2.1 Longitudinal Dynamic Models 

The Winged-cone Generic Hypersonic Vehicle (GHV) in [12] model is shown 

in Fig. 2.2 and development is carried by NASA, aimed to develop manned, 

horizontal takoff and landing, approaches for SSTO configuration and conical 

accelerator. The GHV model is extensively used for the control approach and 
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its development for the AHVs. The longitudinal dynamics of the winged-cone 

GHV in [12] is represented by the dynamic model Eqn. (2.1-2.5) is extensively 

used for the hypersonic modeling and control. The non-linear longitudinal 

winged-cone GHV is discussed in [47] and model dynamics is given by, 
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The state variables are given by 𝑥 = [𝑉 ℎ 𝛼 𝛾 𝑞]′ and the controls as 𝑢 =

[𝛿௘ 𝜙]′.  The aerodynamics force and moment coefficients  𝐶௅ , 𝐶஽, 𝐶ெ and 𝑀௬௬, 

and 𝐿, 𝐷, 𝑇, 𝑟ா and 𝑞 are referred from the winged-cone GHV model. And the 

control 𝛿௘ and 𝜙 input is given by, 𝐶் = 0.02576 𝜙, for 𝜙 < 1 and otherwise 

𝐶் = 0.0224 + 0.00336 𝜙, and 𝐶ெ(𝛿𝑒) = 0.0292(𝛿𝑒 − 𝛼) respectively.  

The control-oriented modeling presented in [48] is achieved with the 

replacement of moment and complex forces with curve fitted approximation 

and by ignoring the weak coupling of the flexible AHV dynamics. The 

longitudinal model is enhanced with an actuator dynamics to improve the 

controlling of the AHV and ignoring, the elevator coupling zero due to weak 

occurrence, altitude and flexible states, and the dynamics of the model is 

presented using Eqn. (2.6-2.10). 
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A hypersonic cruise concept model in [49] shown in Fig. 2.2, with waverider 

design is proposed with the propulsion airframe integration methodology. It 

uses the concept of combined propulsion technique with turboramjets and 

scramjet. In [50] nonlinear physics based longitudinal model for the AHV is 

presented and complex interface between aerodynamics and propulsion is 

discussed. The AHV longitudinal vehicle nonlinear model equations are given 

by the dynamic model Eqn. (2.11-2.17), 
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where 𝜂௜ , 𝑁௜ , 𝜁௜ , 𝜔௜ are the generalized elastic coordinates and forces 

respectively, damping coefficient and natural frequency of elastic modes 

respectively and detailing of dynamics can further be referred from [50]. The 
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conceptual project models of AHV analyzed over the decades are summarized 

in Fig. 2.2. 

2.2.2 Lateral and Longitudinal Dynamic Models 

A 3-Dimensional Vehicle Simulation Framework model in [51] is shown in 

Fig. 2.2 with parameterized vehicle geometry is designed to assess the GHV 

controllability traits, configuration tradeoffs and control designs. It presents the 

six degree of freedom GHV model developed using rigid-body motion 

equations based on Newtonian method and with one dimensional propulsion 

model. The dynamics of the GHV model is given by the dynamic model Eqn. 

(2.18-2.23).  
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The translation and angular velocity are given by 𝑉
→

஻ and 𝜔
→

஻ with their 

components as 𝑢, 𝑣, 𝑤 and 𝑝, 𝑞, 𝑟 respectively, and 𝐼௫௫, 𝐼௬௬, 𝐼௭௭ are the moment 

of inertial components, with all components represented in the body frame. 

GHV model attitude and position is given by Euler angles and Earth fixed 

inertial frame respectively. The frame transformation 𝑇ா஻ matrix is the Body to 

Earth frame conversion and the kinematics for both attitude and position are 

given by Eqn. (2.24-2.25),  
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The modelling technique with Parameterized Configuration in [52] 

methodology shows the possibility of integrated design of the AHV 

aerodynamics, scramjet propulsion and control method, given by Fig. 2.2. 

Model shows scramjet engine modelling designed to integrate air frame and 

propulsion for the engine model using experimental approaches.  The 6-DOF 

AHV rigid model dynamics is given by the dynamic model Eqn. (2.26-2.37).  

 𝑉
˙
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   𝑞
˙

= 𝑐ହ𝑝𝑟 − 𝑐଺(𝑝ଶ − 𝑟ଶ) + 𝑐଻𝑀         (2.33) 
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   𝜙
˙

= 𝑝 + (𝑟 cos𝜙 + 𝑞 sin𝜙)tan𝜃          (2.35) 

   𝜃
˙
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   𝜓
˙
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Here 𝑉, 𝜇, 𝜑 and 𝛾 called as velocity, angle-of-track, yaw angle, roll angle track 

respectively. Aerodynamics force and moment coefficients  𝐶௅, 𝐶஽, 𝐶ெ, 𝐿, 𝐷, 𝑌, 

𝐶௟ , 𝐶௠, 𝐶௡, 𝐿, 𝑀 and 𝑁; thrust coefficient 𝑇, constants 𝑐ଵ to 𝑐ଽ are the 

coefficients of inertial component and geometric interactions is discussed in 

[52].  

The Road Runner Model in [53] of the generic AHV shown in Fig. 2.2 is 

developed as a benchmark for the control system design and analysis. It 

presents the adaptive design approach for tracking and stability using gain 

schedule method and LQR PI controller. The model is small, unmanned, 

blended wing body and has 4 control surfaces comprising of 2 elevons and 

rudder each. The lateral and longitudinal dynamics of the model using state 

space approach is represented as 𝑥̇ = 𝑓(𝑋, 𝑈) and the states and control input 

are given by the dynamic model Eqn. (2.38-2.39). 

   𝑋 = [𝑉் 𝛼 𝑞 𝜃 ℎ 𝛽 𝑝 𝑟 𝜙 𝜓 𝜆 𝜏]′         (2.38) 

   𝑈 = [𝛿௧௛  𝛿௘௟௩ 𝛿௔௜௟ 𝛿௥௨ௗ]ᇱ.          (2.39) 

Here 𝑉் , 𝛼 and 𝛽, are vehicle velocity, angle-of-attack and sideslip; 𝜆, 𝜏, ℎ are 

model latitude, longitude and altitude respectively. Control matrix 𝑀 is 

transformation matrix between the control input 𝑈ହ and 𝑈 given by 𝑈 = 𝑀𝑈ହ, 

with 𝑈ହ is defined as throttle, deflection of right and left elevons ൫𝛿௥,௘௟௩, 𝛿௟,௘௟௩൯ 

and rudders ൫𝛿௥,௥௨ௗ, 𝛿௟,௥௨ௗ൯ expressed using Eqn. (2.40). 
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   𝑈ହ = ൣ𝛿௧௛ 𝛿௥,௘௟௩ 𝛿௟,௘௟௩ 𝛿௥,௥௨ௗ 𝛿௟,௥௨ௗ൧
ᇱ
         (2.40) 

The Geometry Generated Model in [54] shown in Fig. 2.2 is inspired by the 

Road Runner Model and is used in the advancement and analysis of control 

systems for the AHV and uses geometry approach for AHV design. The 6 DOF 

nonlinear model equations are used assuming the model is rigid. The dynamics 

of the model is given by the Eqn. (2.41-2.42) with the state space representation 

as 𝑋
˙

௩ = 𝑓(𝑋௩ , 𝑈௩), where the state vector 𝑋௩ ∈ ℝଵଷ and control vector 𝑈௩ ∈

ℝହ are given by, 

   𝑋௩ = [𝑢 𝑣 𝑤 𝑝 𝑞 𝑟 𝑞ଵ 𝑞ଶ 𝑞ଷ 𝑞ସ 𝜆 𝜏 𝑅]′        (2.41) 

   𝑈௩ = ൣ𝜑  𝛿௘ଵ,௥  𝛿௘ଵ,௟  𝛿௥௨ௗ,௥   𝛿௥௨ௗ,௟൧′         (2.42) 

where 𝑢, 𝑣, 𝑤 and 𝑝, 𝑞, 𝑟 are the AHV airspeed and angular velocity component, 

and 𝜆, 𝜏 and 𝑅 are AHV’s latitude, longitude and Earth distance from center 

respectively, and 𝑞ଵ, 𝑞ଶ, 𝑞ଷ and 𝑞ସ are the quaternion components. Here 

𝜑, ൫𝛿௘ଵ,௥  𝛿௘ଵ,௟൯ and ൫𝛿௥௨ௗ,௥   𝛿௥௨ௗ,௟൯ are the engine fuel air equivalence ratio, 

elevon deflection of right and left, and rudder defection of right and left 

respectively.   

The MAX-1 model in [55] shown in Fig. 2.2 is known as Michigan/AFRL 

Experimental 1 (MAX-1) is used for the analysis of the ascent of the GHV 

using Surrogate optimization, which uses the dual mode ramjet-scramjet 

propulsion engine. It implements using the assumption of the ellipsoidal shape 

Earth and gravity model for the equation of motions. 6-DOF rigid-body 

dynamics for model is given with 𝑥̇ = 𝑓(𝑥, 𝑢), here 𝑥 and 𝑢 are states and 

controls, respectively is represented by the model Eqn. (2.43-2.44). Here the 

states with their control input variables are expressed below. 

   𝑥 = [𝐿 𝜆 ℎ 𝑉 𝛾 𝜎 𝜙 𝛼 𝛽 𝑃 𝑄 𝑅]′         (2.43) 

   𝑢 = [𝐸𝑅 𝛿௘ 𝛿௔ 𝛿௥]′           (2.44) 
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Here 𝐿, 𝜆 and 𝜎 are the geodetic latitude, longitude and velocity heading angle 

and, 𝛿௘ and 𝛿௔ are the average deflection angle of elevator of lift and right, and 

the difference angle of right minus the left elevator angle, respectively. 

 

Fig. 2.2 Dynamic models design used over the decades for AHVs 

We conclude that the dynamic model of the Winged cone is widely used for 

investigation of AHV, considering longitudinal model. Considering other 

models waverider model finds more usage. Hence, Winged cone, Road Runner 

and X-43A, are completely established models available to public for research 

and these models can be used in the study of flight dynamics and control 

systems. 

2.3 Flight Control System Review 

The dynamics and control of hypersonic vehicles that require propulsion 

technology is presented in numerous open literatures. The highly coupled and 

nonlinear character of the dynamic behavior of hypersonic vehicles presents a 

significant challenge for the design of flight control systems. To ensure flight 

control system stability and satisfactory control performance, however, 

controllers developed for hypersonic aircraft must travel at extremely high 

speeds. Maintaining good control performance under these circumstances is 

difficult, and adaptive control design approaches are required for optimal 

performance in any and all flight scenarios. 

The limitations and open issues in current control-oriented models of AHVs 

are highlighted, and different associated control methods are presented. 
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Because of their complicated dynamic characteristics, uncharted flight 

situations, and stringent control requirements, AHVs require a control system 

that is highly maneuverable, durable, and adaptable. Many different control 

methods, such as small deviation linearization in [57], Gain Scheduling in [58], 

Linear Parameter Varying in [59], feedback linearization, Sliding Mode 

Variable Structure Control in [60], Backstepping in [61], Neural Network in 

[62], Fuzzy control in [63], Predictive control, artificial intelligence, and other 

hybrid methods are attempted due to the complexity of AHVs and the novel 

trends of modern control methods are magnificently presented, as stated in 

[56]-[63]. Despite years of study, the method for modelling the dynamics of 

AHVs is still evolving. Many researchers owe a debt of gratitude to NASA 

Langley Research Centre, which in 1990 created the first six-degrees-of-

freedom model for AHVs and provided a plethora of supporting data. In 1994, 

Chavez and Schmidt developed a first-principles 3-DOF dynamic model for 

hypersonic vehicles that captures a variety of complex interactions. Both of the 

aforementioned models, however, were developed with a rigid body 

assumption that discounted the interplay between structural dynamics and 

aerodynamics. However, these models were not accurate representations of the 

true flying characteristics. Bolender and Doman [64]-[65], constructed a 

flexible nonlinear 3-DOF dynamic model from fundamental principles, taking 

into account the couplings between air, heat, elasticity, and the propulsion 

system in [66]-[67].  In [68], curve-fit approximations for complex force and 

moment functions and ignoring some weak couplings and slower portions of 

the system dynamics, a control-oriented model in closed form was developed, 

which is very helpful for the controller design. Despite the fact that scientists 

at home and abroad have put in a great deal of effort into modelling AHVs in 

recent years, the models in [68] continue to serve a pivotal part in the creation 

of controllers, as stated in [69]-[71]. 

Several academics have tackled the task of flight control design for such 

systems using various control design methodologies. Sliding mode control in 

[72], Linear Quadratic Gaussian control in [73], stochastic robust control in 

[74], and neural network adaptive control in [75] are just few of the recent 

feedback control strategies for the hypersonic vehicle that are grounded in 
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differential geometric nonlinear control theory. The problem with this approach 

is that the controller design requires precise understanding of the plant 

dynamics and repetitive analysis.  In [72] multi input multi output (MIMO) 

adaptive sliding mode controller designs are developed, which is robust to 

parametric uncertainties and presents appropriate performance with relatively 

low-amplitude control inputs. Nonlinear control laws that are effective across 

the full range of flight are developed using nonlinear dynamic inversion (NDI) 

and Monte Carlo evaluation. In [75], we see an example of an adaptive MIMO 

controller for a hypersonic vehicle that employs neural network control 

techniques. In the event that the estimated plant loses controllability, the 

suggested neural adaptive controller ensures closed-loop stability and 

convergence of the tracking error. Combat air vehicles and missiles, both of 

which use flight control systems, can be converted to a strict-feedback form, 

and thus can benefit from the back-stepping design approach in [76], which 

gives an efficient solution to a large group of nonlinear systems with miss-

matched conditions. However, "explosion of complexity" occurs with the back-

stepping technique, wherein the controller's simplicity grows significantly as 

the order of the system increases. This is due to the recurrent differentiations 

of certain nonlinear functions. 

The complexity introduced by back-stepping control technique is overcome by 

the use of Dynamic Surface Control (DSC) method in [77]-[78]. This technique 

uses a first order low pass filter at every step-in order to avoid the derivative of 

the nonlinear function. For the control of a hypersonic vehicle whose dynamics 

are unknown, a DSC-based system employing fuzzy logic and an adaptive 

technique is applied in [79]. Closed-loop designs for hypersonic vehicles 

benefit from methods like the neural network-based dynamical systems 

stability (DSS) technique for a class of nonlinear dynamic models. Robust 

variations of these techniques have also been developed   for   systems   with   

modeling   uncertainty.   Nonlinear   functions   like   parameter uncertainties 

and cross coupling effects are approximated using some of the techniques like 

radial basis function (RBF) neural network. 

One effective solution to this issue is to implement an adaptive control law, as 

has been discovered through research. The nonlinear flight dynamics are 
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controlled by an adaptive technique using back-stepping and neural networks 

in [80], but back-stepping control techniques suffer from complexity of control 

laws, as stated in [77], [81]-[82].  Some control techniques like robust control 

and H∞ control have proven powerful design methods.  In [66], advanced 

control technique of H∞ approach is used with µ synthesis. Intelligent control 

techniques can be designed to provide a robust flight control using optimization 

techniques, to guarantee stepwise stability of the system. Hence the control 

techniques are still in research phase and many more analysis are still in 

developing process for the hypersonic vehicles. 

2.4 Bifurcation Method Review 

The bifurcation method provides promising application for flight controls and 

its effective analysis of nonlinear phenomena occurring in the flight dynamics. 

Bifurcation technique can provide an improvement suggestion in the flight 

dynamics design procedure considerably. The significance of bifurcation 

method has a capability to present global stability and improvements of control 

design parameters for the aircraft. Bifurcation methods may be used to 

investigate the trim with stability for dynamical systems, involving nonlinear 

influences, computationally. With this method analysis, nonlinear behavior may 

be better understood since it keeps track of all trim points at which equilibriums 

are created or destroyed, or at which the stability of equilibriums varies. 

Analysis of nonlinear AHV model using Bifurcation methods presents a new 

technique to understand the trim and stability of the dynamic system with the 

nonlinear properties. Nonlinear dynamics analysis of the aircraft in [83] shows 

the bifurcation and continuation method is used for the analysis of high alpha 

impact on aircraft stability and dynamic. The technique delivers quantitative 

data for global-stability and suggests ways for control of aircraft's nonlinear 

behavior. Application for bifurcation method is presented in [84] for the flight 

dynamics, outlines a beneficial method for analyzing and control of the 

dynamical systems. The method has remarkable prospective in the analysis of 

aircraft performance using wind tunnel data and excellent flight controls could 

be proposed for the system predicting dynamic behavior. Analysis of bifurcation 

method to nonlinear aircraft highlighting the problems of the flight dynamics 
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like roll coupling, stall, spin and others are deliberated in [85]. It discusses the 

stability of the aircraft equation of motions highlighting the equilibrium 

solutions, periodic solutions and regions of attraction. The method discussed, 

shows potential in closed loop analysis of nonlinear dynamics and, 

implementation and design of control technique is possible. Merits, demerits of 

the method with a development and implementation point of view for the 

aircraft is discussed and suggested in [86]. Review of computational methods 

and distinctive analytical approach for the method is presented, and aircraft 

control presents the promising area for the method analysis which can provide 

remarkable application using bifurcation technique with control methods. A 

computation technique for parameters of flight dynamics using continuation 

diagrams is presented in [87]. In [88], bifurcation with continuation method 

shows detailed theoretical 6 DOF nonlinear model of the aircraft for the analysis 

of dynamics and stability of the flight. Implementation of bifurcation method 

for flight controls is presented in [89] for 6 DOF nonlinear dynamics of F-16 

for straight, level and coordinated turn. The bifurcation method using 

computational approach is discussed in [90] with nonlinear closed-loop analysis 

and for controller design. In [91] bifurcation method is used with SMC to 

analysis the nonlinear 6 DOF F-18 aircraft model with high alpha. Different 

flight maneuvers are analyzed with the level flight operating condition, and 

robustness of the controller with the closed loop analysis is described. Nonlinear 

Dynamic Inversion based control law validation, analysis and design using 

bifurcation method with global stability is discussed in [92]. Extended 

Bifurcation Theory (EBA) in [93] outlines the study of open loop dynamics of 

the landing arrangement of F-18/HARV and shows the importance of 

bifurcation method in development and design phases of fighter aircraft. 

Analysis of bifurcation method is presented in [94] for the parafoil payload 

system showing the effects of trim and stability of the flight dynamics 

parameters. Analysis of bifurcation method to the 4 DOF flight model is carried 

out on the longitudinal dynamics and effect of parameters on autonomous 

parafoil payload delivery system model in [95] is observed. The nonlinear 

hypersonic vehicle dynamics is analyzed with the bifurcation and continuation 

method in [96] using the scheme of multi model and design of controller. 
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2.5 Chapter Summary 

The literature survey reveals that deep research has been conducted in 

investigating the hypersonic vehicle model, control system design and 

bifurcation method application through different aircraft models. 

On comparing all the models in the open literature, the Winged-cone, 

Roadrunner, X-43A and X-51A six-DOF models are entirely established models 

which can be used for the flight dynamics analysis using bifurcation method and 

control design. The different other models are merely hypotheses at this point, 

even though they could be used as six-DOF models for the future control design. 

The all AHV models are shown in the Table 2.1.  

The review of bifurcation method shows that the parameters used for the 

different systems with their dynamic model shown in Table 2.2, shows that 

elevator deflection (𝛿௘)  is mostly considered as the BP (Bifurcation Parameter) 

for Bifurcation Method.  

For many reasons, flight control problem for hypersonic vehicles goes far 

beyond the difficulties encountered with the previous aircraft in [97] and 

spacecraft designs. 

 

Table 2.1 Summarized 6-DOF AHV Model 

Model Year Reference 

Winged Cone Model 1990 [12] 

Road Runner Model 2013 [53] 

MAX-1 Model 2010 [55] 

Geometry Generator Based 
Model 

2014 [54] 

Waverider Model 2005 [49] 

Huifeng Model 2011 [52] 

Frendreis Model 2009 [51] 

NASA’S X-43A 2006 [33] 

NASA’S X-51A 2014 [39] 
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Table 2.2 Bifurcation Parameters for different Systems 

 
Sr. No.                  System                Bifurcation Parameter        Dynamic Model 

1  F-16 Aircraft Velocity and 𝛿௘  6 DOF  
2  F-18/HARV Aircraft 𝛿௘    6 DOF  
3  F-8 Crusader Aircraft 𝛿௘   3 DOF  
4  High α flight Aircraft 𝛿௘    3 DOF  
5  HHIRM 𝛿௘  and 𝛿௔  , 𝛿௥  5 DOF  
6  Parafoil-Payload δ, μ  4 DOF  

 

The control obstacles such as with the other high-performance aircraft like, 

hypersonic vehicles dynamics exhibit a nonlinear, multivariable, time-varying, 

non-minimum phase type of behaviour. Most of the analysis will have to be best 

approximated so that AHVs FCS will possibly have to operate using a 

simplified model of the system which includes some uncertainty in the 

parameters in [98]. Design techniques and stability for control are in research 

phase and many more analysis are still in developing process for the AHVs. 

These challenges and issues in the design of controllers for the AHVs faced by 

the control law development can be highlighted by the Fig. 2.3. It discusses the 

control issues focusing on the complete maneuver control of AHVs in 

widespread flight envelop involving the climbing, cruising, re-entry, and inter-

shifting regimes stages of the flight trajectory. 

 

Fig. 2.3 AHV controller issues 
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The conclusion from the controller design for the AHVs shows that, advanced 

control methods can be used, and should recognize the change in dynamics and 

adapt to these changes in the real time application. Advanced control design 

techniques can be used to design and handle the non-linear complexity of the 

problem. The adaptive based control technique is preferred for designing the 

control for the nonlinear flight dynamics. And Intelligent control techniques can 

be designed to provide a robust flight control using optimization techniques, and 

guaranteed stability of the system. 

The literature survey presents the following main gaps which still need to be 

overcome. 

• The dynamic couplings due to integration and interaction problems between 

systems also need to be solved to the effects of hypersonic speed in any AHV 

model or control scheme.  

• The AHV propulsion, and its interactions for the entire flight regime with 

Mach number variation provides challenges in the control design. 

• The modeling of AHV discussed in the open literature is constrained by the 

reality for the hypersonic vehicle, dynamics is restricted to flight regime. 

• The problems lying in hypersonic flight with large flight envelop and 

dynamics interaction finds limited research in the open literature. 

• Coupling of inputs and outputs, non-minimal phase instability, flexible-

modes, and control limitations are common problems in controller design for 

hypersonic vehicles. 

• Bifurcation analysis for the nonlinear AHV model for different flight regimes 

finds limited study using continuation algorithm. 
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CHAPTER 3 

DEVELOPMENT OF DYNAMIC AHV MODEL 

NASA Langley Research Centre developed Generic Hypersonic Vehicle 

(GHV) simulation model called Winged Cone Configuration in [12] is shown 

in Fig. 3.1. The model is based on rigid body mass assumption and is used to 

investigate the hypersonic research improvement and assessment of design 

concepts, guidance, flight, propulsion, control systems, trajectory optimization, 

stability and methods for SSTO. The model is integrated with the propulsion 

system including ramjet and scramjet propulsion system.  

3.1 Vehicle Description 

The flat Earth approximation is applied for modeling and dynamic simulation 

of AHV model. The winged cone model is modelled as axis symmetric. The 

wings and vertical tail is aligned with the center axis of the model. The control 

surfaces of the model are defined as left elevon, right elevon, canard and rudder. 

The canard is deployed at subsonic speed to improve longitudinal stability and 

control. Deflections of the canard are measured in relation to the centerline of 

the fuselage, with a positive value indicating a downward tilt of the trailing 

edge. At high sonic velocities (hypersonic) canard fins are placed inside the 

vehicle body and has negligible impact for high sonic flight velocities. The 

vertical tail is hinged 25 percent of the chord from the trailing edge and is 

positioned in the centre of the fuselage. Positive rudder deflections with the 

trailing edge to the left are considered an elevon deflection about the rudder's 

hinge line. Gross weight of the vehicle is 300,000 lbs. Also the fuel slosh is 

ignored and cross coupling of inertia is considered insignificant. Generic AHV 

model is integrated with propulsion system including ramjet and scramjet 

propulsion system, and also with rocket engine. The geometric considerations 

of generic AHV model are specified within Table 3.1. 
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(a) 

 

(b) 

Fig. 3.1 The GHV model (a) top view (b) side view, [12] 

 

Table 3.1 Geometry Parameters 

 
Notation                  Parameter                            Value                 Unit 

m  Mass  136080 Kg  
S  Wing Reference Area  334.7295 m2  
b  Wing Span  18.2880 m  
c 

xmrc 
g 

Tmax 
Isp  

Mean Aerodynamic Chord 
Moment Reference Centre 

Gravity 
Maximum Thrust 
Specific Impulse  

24.384 
37.7952 
9.8 
1467900 
1000 

m 
m 

m/sec2 
N 

g sec  
 

3.2 Equation of Motions 

For the purposes of the AHV model simulation, a flat Earth approximation is 

adopted. The aerodynamic and proportional force 𝐹஺,௉ as well as the 

gravitational force 𝑚𝑔 are incorporated into the governing equations of flight. 
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The transitional equations in terms of ordinary time derivatives can be 

represented in body-coordinate as ]஻ and is given by Eqn. (3.1), as stated in 

[15]-[16]. 

  𝑚 ቂ
ௗ௩ಳ

ೇ

ௗ௧
ቃ + 𝑚[𝛺஻ா]஻[𝑣஻

ா]஻ = ൣ𝐹஺,௉൧
஻

+ 𝑚[𝑔]஻           (3.1) 

The quantity [𝑔]஻ is modelled with as [𝑔]௅ = [0 0 𝑔] for the gravitational 

acceleration. Therefore, Eqn. (3.2) represents the matrix form of the transitional 

equations. 

  𝑚 ቂ
ௗ௩ಳ

ೇ

ௗ௧
ቃ + 𝑚[𝛺஻ா]஻[𝑣஻

ா]஻ = ൣ𝐹஺,௉൧
஻

+ 𝑚[𝑇]஻௅[𝑔]௅           (3.2) 

Expressing the relation given by Eqn. (3.2) in coordinate form is obtained using 

Eqn. (3.3). 

    𝑚 ቐ൥

𝑑𝑢/𝑑𝑡
𝑑𝑣/𝑑𝑡
𝑑𝑤/𝑑𝑡

൩

஻

+ ൥

0 −𝑟 𝑞
𝑟 0 −𝑝

−𝑞 𝑝 0
൩

஻

ቈ
𝑢
𝑣
𝑤

቉

஻

ቑ = ቎

𝐹஺,௉ଵ

𝐹஺,௉ଶ

𝐹஺,௉ଷ

቏

஻

+ [𝑇]஻௅ ൥

0
0

𝑚𝑔
൩

௅

   (3.3) 

Were,    [𝑇]஻௅ = ൥

𝑡ଵଵ 𝑡ଵଶ 𝑡ଵଷ

𝑡ଶଵ 𝑡ଶଶ 𝑡ଶଷ

𝑡ଷଵ 𝑡ଷଶ 𝑡ଷଷ

൩

஻௅

 

The Eqn. (3.3) in scalar form is expressed using the following Eqn. (3.4)-(3.6). 

ௗ௨

ௗ௧
= 𝑟𝑣 − 𝑞𝑤 +

ிಲ,ುభ

௠
+ 𝑡ଵଷ𝑔                      (3.4) 

ௗ௩

ௗ௧
= 𝑝𝑤 − 𝑟𝑢 +

ிಲ,ುమ

௠
+ 𝑡ଶଷ𝑔                      (3.5) 

ௗ௪

ௗ௧
= 𝑞𝑢 − 𝑝𝑣 +

ிಲ,ುయ

௠
+ 𝑡ଷଷ𝑔                      (3.6) 

Considering the Eqn. (3.7) transformations can be performed for yaw, pitch and 

roll (𝜓, 𝜃, 𝜙 respectively) to desired coordinate frame. 

[𝑇]஻ீ = [𝑇(𝜙)]஻௒[𝑇(𝜃)]௒௑[𝑇(𝜓)]௑ீ                   (3.7) 

Euler's law determines the degree of freedom (DOF) of rotation by stating that 

the rate of change of angular momentum over time equals the externally applied 

moments. The body axis coordinate system is used as a coordinate system 

because it gives a fixed value for the moment of inertia tensor from [15]-[16] 

and inertial frame of reference (E), is given by Eqn. (3.8) and Eqn. (3.9). 
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  [𝐼஻
஻]஻ ቂ

ௗ௪ಳಶ

ௗ௧
ቃ

஻

+ [𝛺஻ா]஻[𝐼஻
஻]஻[𝜔஻ா]஻ = [𝑀஻]஻           (3.8) 

       ቂ
ௗ௪ಳಶ

ௗ௧
ቃ

஻

= ([𝐼஻
஻]஻)ିଵ(−[𝛺஻ா]஻[𝐼஻

஻]஻[𝜔஻ா]஻ + [𝑀஻]஻)           (3.9) 

In the case of a flat Earth, the wind and thrust forces, as well as the momentums, 

are shown using a body coordinate system and are given by Eqn. (3.10) and 

Eqn. (3.11). 

   ൣ𝐹஺,௉൧ = ൥

𝑞ത𝑆𝐶௑ + 𝐹௉

𝑞ത𝑆𝐶௒

𝑞ത𝑆𝐶௓

൩                  (3.10) 

    [𝑀஻]஻ = ൥

𝑞ത𝑆𝑏𝐶௟

𝑞ത𝑆𝑐𝐶௠

𝑞ത𝑆𝑏𝐶௡

൩                  (3.11) 

The nonlinear model of the AHV can be given by the Eq.   

𝑢
·

= 𝑟𝑣 − 𝑞𝑤 +
ிಲ,೉ାிು,೉

௠
− 𝑔. 𝑠𝑖𝑛𝜃               (3.12) 

𝑣
·

= 𝑝𝑤 − 𝑟𝑢 +
ிಲ,ೊ

௠
+ 𝑔. 𝑐𝑜𝑠𝜃                   (3.13) 

𝑤
·

= 𝑞𝑢 − 𝑝𝑣 +
ிಲ,ೋ

௠
+ 𝑔. 𝑐𝑜𝑠𝜃                   (3.14) 

   𝑝
·

= 𝑐ଵ𝑞𝑟 + 𝑐ଶ𝑝𝑞 + 𝑐ଷ𝐿௔ + 𝑐ସ𝑁௔         (3.15) 

   𝑞
·

= 𝑐ହ𝑝𝑟 − 𝑐଺(𝑝ଶ − 𝑟ଶ) + 𝑐଻𝑀௔         (3.16) 

   𝑟
·

= 𝑐଼𝑝𝑞 − 𝑐ଶ𝑞𝑟 + 𝑐ସ𝐿௔ + 𝑐ଽ𝑁௔         (3.17) 

   𝜙
·

= 𝑝 + 𝑞. 𝑠𝑖𝑛𝜙. 𝑡𝑎𝑛𝜃 + 𝑟. 𝑐𝑜𝑠𝜙. 𝑡𝑎𝑛𝜃        (3.18) 

   𝜓
·

= 𝑞. 𝑠𝑖𝑛𝜙. 𝑠𝑒𝑐𝜃 + 𝑟. 𝑐𝑜𝑠𝜙. 𝑠𝑒𝑐𝜃         (3.19) 

   𝜃
·

= 𝑞. 𝑐𝑜𝑠𝜙 − 𝑟. 𝑠𝑖𝑛𝜙          (3.20) 

   ℎ
·

= 𝑢. 𝑠𝑖𝑛𝜃 − 𝑣. 𝑠𝑖𝑛𝜙. 𝑐𝑜𝑠𝜃 − 𝑤. 𝑐𝑜𝑠𝜙. 𝑐𝑜𝑠𝜃      (3.21) 
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The control surfaces of AHV are given by 𝛿௘, 𝛿௔, and 𝛿௥ as right elevon, right 

elevon, and rudder deflection. The elevon (left and right) relation to aileron and 

elevator deflection is developed using the relation as 𝛿௟௘௙௧_௘ = 𝛿௔ + 𝛿௘ and 

𝛿௥௜௚௛ _௘ = −𝛿௔ + 𝛿௘. 

3.2.1 3DOF Longitudinal Nonlinear Model 

The generic AHV model is centered on the theory of rigid model structure 

combined with flat Earth approximation. Flat Earth approximation is applied in 

modeling and simulation of AHV model using in [15]. Centres of mass, centres 

of gravity, and moments of inertia that change over time are incorporated into 

a simulation model using the equations of motion. Mass of generic AHV, center 

of gravity location and products of inertia vary as fuel is consumed. Center of 

gravity moves only along the body x axis as the fuel is consumed. Model 

configuration of the thrust applied is adjusted with body x axis. And in body y 

axis and z axis no T force is applied.  

The model is modelled to 3DOF AHV model in [16] with the state variables 

defined as the states as 𝑉, 𝛾, 𝑞, 𝜃, 𝑅 𝑎𝑛𝑑 ℎ. Longitudinal dynamics and 

kinematic equations of the generic AHV model is given by Eqn. (3.22-3.28). 

   𝑉̇ =
ଵ

௠
(𝑇 cos𝛼 − 𝑞𝑆𝐶஽ − 𝑚𝑔 sin𝜃)              (3.22) 

   𝛾̇ =
ଵ

௠௏
(𝑇 sin𝛼 + 𝑞𝑆𝐶௅ − 𝑚𝑔 𝑐𝑜𝑠𝜃)              (3.23) 

   𝑞̇ =
ெ

ଶூ೤೤
                    (3.24) 

   𝜃̇ = 𝑞                         (3.25) 

   𝑅̇ = 𝑉 𝑐𝑜𝑠𝜃                 (3.26) 

   ℎ̇ = 𝑉 sin𝜃                         (3.27) 

We can use the relation 𝛼 = 𝜃 − 𝛾, to obtain the 𝛼
˙
 and is given by the Eqn. 

(3.28).   

   𝛼̇ = 𝑞 − ቀ
ଵ

௠௏
ቁ (𝑇 sin𝛼 + 𝑞𝑆𝐶௅ − 𝑚𝑔 cos𝜃)         (3.28) 
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3.2.2 6DOF Linear Model 

The model is based with stiff model structure and flat Earth approximation 

theory. The AHV model's six degrees of freedom are modelled and simulated 

using a flat Earth approximation in [15]. Simulation model incorporates time 

varying center of mass, gravity, and inertia using equations of motion. As fuel 

is used, the center of gravity shifts exclusively in the 𝑥 direction of the body. 

The model's thrust arrangement may be tweaked using the body's 𝑥 axis. The 𝑦 

and 𝑧 axes of the body are free of any T (thrust) forces. AHV flight dynamics 

model in [15] are provided by Eqn. (3.29-3.37). 

  𝑚𝑢
·

= 𝑟𝑣 − 𝑞𝑣 − 𝑔. sin𝜃 + 𝐹௔௫ + 𝐹்௫         (3.29) 

  𝑚𝑣
·

= 𝑝𝑤 − 𝑟𝑣 + 𝑔. 𝑐𝑜𝑠𝜃 + 𝐹௔௬          (3.30) 

  𝑚𝑤
·

= 𝑞𝑢 − 𝑝𝑣 + 𝑔. 𝑐𝑜𝑠𝜃 + 𝐹௔௭          (3.31) 

  𝑝
·

= 𝑐ଵ𝑞𝑟 + 𝑐ଶ𝑝𝑞 + 𝑐ଷ𝐿௔ + 𝑐ସ𝑁௔          (3.32) 

  𝑞
·

= 𝑐ହ𝑝𝑟 − 𝑐଺(𝑝ଶ − 𝑟ଶ) + 𝑐଻𝑀௔          (3.33) 

  𝑟
·

= 𝑐଼𝑝𝑞 − 𝑐ଶ𝑞𝑟 + 𝑐ସ𝐿௔ + 𝑐ଽ𝑁௔          (3.34) 

  𝜙
·

= 𝑝 + 𝑞. 𝑠𝑖𝑛𝜙. 𝑡𝑎𝑛𝜃 + 𝑟. 𝑐𝑜𝑠𝜙. 𝑡𝑎𝑛𝜃         (3.35) 

  𝜃
·

= 𝑞. 𝑐𝑜𝑠𝜙 − 𝑟. 𝑠𝑖𝑛𝜙           (3.36) 

  ℎ
·

= 𝑢. 𝑠𝑖𝑛𝜃 − 𝑣. 𝑠𝑖𝑛𝜙. 𝑐𝑜𝑠𝜃 − 𝑤. 𝑐𝑜𝑠𝜙. 𝑐𝑜𝑠𝜃         (3.37) 

The model given by Eqn. (3.29-3.31) are modelled in the wind axis and are 

represented with 𝑉, 𝛼 and 𝛽 using the following relations. 

   𝑉
·

=
ଵ

௏
(𝑢𝑢

·
+ 𝑣𝑣

·
+ 𝑤𝑤

·
)          (3.38) 

   𝛼
·

= (𝑢𝑤
·

− 𝑤𝑢
·
)/(𝑢ଶ + 𝑤ଶ)          (3.39) 



47 
 

  𝛽
·

= ((𝑢ଶ + 𝑤ଶ)𝑣
·

− 𝑣(𝑢𝑢
·

+ 𝑤𝑤
·

)/𝑉ଶ√𝑢ଶ + 𝑤ଶ        (3.40) 

Here the relation between the components are given as 𝑢 = 𝑉cos𝛼. cos𝛽, 𝑣 =

𝑉. sin𝛽, 𝑤 = 𝑉. sin𝛼. cos𝛽, 𝑉 = |𝑉| = √𝑢ଶ + 𝑣ଶ + 𝑤ଶ and, the angles are 

given by, 𝛼 = tanିଵ(𝑤/𝑢), and 𝛽 = 𝑠𝑖𝑛ିଵ(𝑣/𝑉). The constants 𝑐ଵto 𝑐ଽ are 

the inertial constants which are dependent on the moments of inertia in [15]. 

The AHV model using the above Eqn. (3.38-3.40) and Eqn. (3.32-3.37) are 

represented by states described as [𝑉, ℎ, 𝛼, 𝜃, 𝑞, 𝑇, 𝛽, 𝜙, 𝑝, 𝑟]′. Here 𝑇 is the 

thrust model with engine of the AHV and is discussed in the later section. 

3.3 Development of Aerodynamic Model 

The aerodynamic model is developed from Appendix A, for the aerodynamics 

coefficient with the equations used and as stated in [13], to determine the 

aerodynamic model 𝐶௅, 𝐶஽, 𝐶௠, 𝐶௒, 𝐶௟ and 𝐶௡, are represented by Eqn. (3.41-

3.52) for wide flight regime of AHV, and the data generated is given in 

Appendix A1. MATLAB is used to simulate the data from Appendix A1 by 

writing a subroutine and performing interpolate. Forces expressed as lift force 

is given by 𝐿 = 𝑞𝑆𝐶௅, drag force is given by 𝐷 = 𝑞𝑆𝐶஽, side force is given by 

𝑌 = 𝑞𝑆𝐶௒, the rolling moment given with 𝐿௔ = 𝑞𝑆𝑏𝐶௟, the pitching moment is 

given as, 𝑀௔ = 𝑞𝑐𝑆𝐶௠and the yawing moment is given by 𝑁௔ = 𝑞𝑆𝑏𝐶௡. The 

nonlinear aerodynamic coefficient equations of the 6DOF dynamic simulation 

model of AHV is given by Eqn. (3.41-3.52), 

  𝐶௅ = 𝑓(𝑀, 𝛼, 𝛿௘ , 𝛿௔)               (3.41) 

  𝐶௅ = 𝐶௅,ఈ + 𝐶௅,ఋ௘ + 𝐶௅,ఋ௔ + 𝐶௅,ఋ௥                  (3.42) 

  𝐶஽ = 𝑓(𝑀, 𝛼, 𝛿௘ , 𝛿௔, 𝛿௥)            (3.43) 

  𝐶஽ = 𝐶஽,ఈ + 𝐶஽,ఋ௘ + 𝐶஽,ఋ௔ + 𝐶஽,ఋ௥              (3.44) 

  𝐶௠௤ = 𝑓(𝑀, 𝛼, 𝛿௘ , 𝛿௔ , 𝛿௥)            (3.45) 

  𝐶௠ = 𝐶௠,ఈ + 𝐶௠,ఋ௘ + +𝐶௠,ఋ௔ + 𝐶௠,ఋ௥ + 𝐶௠௤ ቀ
௤௖

ଶ௏
ቁ           (3.46) 

  𝐶௒ = 𝑓(𝑀, 𝛼, 𝛽, 𝛿௘ , 𝛿௔, 𝛿௥)            (3.47) 

  𝐶௒ = 𝐶௒,ఉ . 𝛽 + 𝐶௒,ఋ௘ + 𝐶௒,ఋ௔ + 𝐶௒,ఋ௥             (3.48) 
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  𝐶௟ = 𝑓(𝑀, 𝛼, 𝛽, 𝛿௘ , 𝛿௔ , 𝛿௥)            (3.49) 

  𝐶௟ = 𝐶௟,ఉ . 𝛽 + 𝐶௟,ఋ௘ + 𝐶௟,ఋ௔ + 𝐶௟,ఋ௥ + 𝐶௟௣ ቀ
௣௕

ଶ௏
ቁ + 𝐶௟௥ ቀ

௥௕

ଶ௏
ቁ  (3.50) 

  𝐶௡ = 𝑓(𝑀, 𝛼, 𝛽, 𝛿௘ , 𝛿௔, 𝛿௥)            (3.51) 

 𝐶௡ = 𝐶௡,ఉ. 𝛽 + 𝐶௡,ఋ௘ + 𝐶௡,ఋ௔ + 𝐶௡,ఋ௥ + 𝐶௡௣ ቀ
௣௕

ଶ௏
ቁ + 𝐶௡௥ ቀ

௥௕

ଶ௏
ቁ        (3.52) 

3.3.1 Longitudinal Aerodynamic Model 

The aerodynamics model is used from [13] to obtain the aerodynamic 

coefficient 𝐶௅, 𝐶஽ and 𝐶௠ as shown in the Fig. 3.2, Fig. 3.3, Fig. 3.4 respectively 

in variation with the M and 𝛼 for the winged-cone GHV model for the complete 

flight regime of the AHV and it includes the different propulsion and engine 

models. The MATLAB code presented in [15] describes the polynomial for the 

aerodynamic coefficients  𝐶௅, 𝐶஽, 𝐶௠, 𝐶௠௤, 𝐶௅,ఋ೐
, 𝐶஽,ఋ೐

 and 𝐶௠,ఋ೐
. These 

polynomial equations are used to generate the data points at each M, ranging 

from M = 0 to 24, and for different range of 𝛼, with 𝛼 =  −1, 1, 4 𝑎𝑛𝑑 10, and 

hence all generated data points given in Appendix A1 are used to generate the 

aerodynamic coefficient plots given in Fig. 3.2, Fig. 3.3, Fig. 3.4. In generation 

of the aerodynamic coefficient data points the engine model is implemented and 

is further discussed in section 3.4 of this chapter. The aerodynamic coefficient 

data is implemented in MATLAB by creating subroutine and interpolation, for 

the nonlinear simulation of the 3DOF longitudinal AHV model. This 

aerodynamic data shown in Fig. 3.2 to Fig. 3.4 is used as the aerodynamic model 

1 in the 3DOF simulation model of the AHV using interpolation. The lift force 

is expressed by 𝐿 = 𝑞𝑆𝐶௅, where lift coefficient is given as 𝐶௅ = 𝑓(𝑀, 𝛼, 𝛿௘), 

drag force is represented by, 𝐷 = 𝑞𝑆𝐶஽, where, drag coefficient is expressed 

with the relation as, 𝐶஽ = 𝑓(𝑀, 𝛼, 𝛿௘) and the pitching moment is given by, 

𝑀 = 𝑞𝑐𝑆𝐶௠, where, pitching moment coefficient is represented by 𝐶௠ =

𝑓(𝑀, 𝛼, 𝛿௘). The linearized equations considered with 3DOF dynamic 

longitudinal simulation model of AHV is used for the bifurcation method, the 

reduced aerodynamics model 2 is developed and is given by the Eqn. (3.53-

3.55), 

   𝐶௅ = 𝐶௅,ఈ. 𝛼 + 𝐶௅,ఋ௘ . 𝛿௘              (3.53) 
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   𝐶஽ = 𝐶஽,ఈ. 𝛼 + 𝐶஽,ఋ௘                  (3.54) 

   𝐶௠ = 𝐶௠,ఈ. 𝛼 + 𝐶௠,ఋ௘ . 𝛿௘ + 𝐶௠௤ ቀ
௤௖

ଶ௏
ቁ         (3.55) 

and, ቀ
௤௖

ଶ௏
ቁ is the computed non-dimensional pitch rate. The aerodynamic 

coefficients in longitudinal flight dynamics are most strongly dependent on the 

aerodynamic angle, angle of attack, Mach number, Reynolds numbers, and 

control surfaces; and aerodynamic coefficients are also affected by deflections 

and propulsion systems in [16]. 

 

Fig. 3.2 Aerodynamic data of 𝐶௅with 𝑀 

 

Fig. 3.3 Aerodynamic data of 𝐶஽with 𝑀 
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Fig. 3.4 Aerodynamic data of 𝐶௠with 𝑀 

The stability derivatives due to a change in the angle of attack  𝐶௅,ఈ, 𝐶஽,ఈ and 

𝐶௠,ఈ denotes aerodynamic events at rest; hence, the term is said as "static 

stability derivatives". The stability derivative 𝐶௠,ఈ establishes the longitudinal 

static-stability of the AHV.  

3.4 Propulsion Model 

The generic AHV engine model operates through the wide flight regime using 

mixed and combined propulsion system as presented in [16]. The proposed 

engine model for the required thrust is combined with the hypothetical model 

of turbojet engine (TE), ramjet and scramjet engine (RSE), and rocket engine 

(RE), as stated in [16], for different Mach number range is given below in Table 

3.2. The different thrust models of the AHV presented in the Eqn. (3.56-3.59) 

from [16] are used for the 3DOF AHV simulation, considering the thrust with a 

function in PLA, height, and Mach number for complete regime of AHV flight. 

The variation of altitude with Mach number and thrust with Mach number using 

the Eqn. (3.56-3.59) is plotted and is shown in Fig. 3.5 and Fig. 3.6 respectively. 

 

Altitude Variation: The atmospheric model with temperature and air density is 

required when altitude changes in relation with the corresponding dynamic 

model output as Mach number. As the atmospheric temperature and air density 

depends on the altitude variation, therefore the relation between them from [99] 

is given by the Eqn. (3.60-3.63) respectively. 
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Table 3.2 Different Engine Model of Generic AHV 

 Engine Model No.                     Engine                         Mach No. Range  

 
 

1 
                Turbojet 0 < 𝑀 ≤ 2 

 

 
 

2 
 

      Ramjet and Scramjet 2 < 𝑀 ≤ 6  

 
 

3 
 

                Rocket          6 < 𝑀 ≤ 24  

 

𝑇ℎ𝑟𝑢𝑠𝑡்ா = 𝑃𝐿𝐴. ൫2.99𝑒05 − 1.00𝑒01. (ℎ) + 1.33𝑒 − 04. (ℎଶ) − 6.48𝑒 −

10. (ℎଷ) + 3.75𝑒03. (𝑀ଷ)൯              (3.56) 

𝑇ℎ𝑟𝑢𝑠𝑡ோௌா =

PLA. (
7.53𝑒02. (𝑀଻) − 1.50𝑒04. (𝑀.଺ ) + 1.16𝑒05. (𝑀ହ) − 4.36𝑒05. (𝑀ସ)

+8.07𝑒05. (𝑀ଷ) − 6.97𝑒05. (𝑀ଶ) + 3.94𝑒05. (𝑀) + 3.93𝑒 − 08
)

                 (3.57) 

For ℎ < 57000, 

𝑇ℎ𝑟𝑢𝑠𝑡ோா = −5.43𝑒04 +  6.64𝑒 − 01. (ℎ) +  3.24𝑒05. (𝑃𝐿𝐴) +  3.74𝑒 −

                        01. (ℎ. 𝑃𝐿𝐴)             (3.58) 

For ℎ > 57000, 

𝑇ℎ𝑟𝑢𝑠𝑡ோா = −1.64𝑒04 +  3.24𝑒05. (ℎ) +  3.24𝑒05. (𝑃𝐿𝐴) +  21295. (𝑃𝐿𝐴)

                (3.59) 

 

Fig. 3.5 Altitude variation with Mach number 
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Fig. 3.6 Thrust variation with Mach number 

𝑓𝑜𝑟 ℎ < 36089 𝑓𝑡,     

           𝑇 = 𝑇଴(1 − 6.875 × 10ି଺ℎ),    𝑤ℎ𝑒𝑟𝑒 𝑇଴ = 518. 7଴𝑅         (3.60) 

𝑓𝑜𝑟 ℎ > 36089 𝑓𝑡,           𝑇 = 389. 99଴𝑅            (3.61) 

𝑓𝑜𝑟 ℎ < 36089 𝑓𝑡,          𝜌 = 𝜌଴(1 − 6.875 × 10ି଺ℎ)ସ.ଶହ଺ଵ          (3.62) 

𝑤ℎ𝑒𝑟𝑒 𝜌଴ = 2.377 × 10ିଷ 𝑠𝑙𝑢𝑔/(𝑓𝑡ଷ) 

𝑓𝑜𝑟 ℎ ≥ 36089 𝑓𝑡,          𝜌 = 0.2971𝜌଴ 𝑒ି
(೓షయలబ )

మబఴబల.ళ                        (3.63) 

                                  𝑤ℎ𝑒𝑟𝑒 𝜌଴ = 2.377 × 10ିଷ 𝑠𝑙𝑢𝑔/(𝑓𝑡ଷ) 

3.5 Operating Flight Conditions 

The aerodynamics coefficient 𝐶௅ഀ
, 𝐶஽ഀ

and 𝐶௠ഀ
 are obtained for the different 

angle of attack with selected value of 𝛼 =  −1 and 4 where 𝛼 is in degrees. 

Here the coefficients 𝐶௅ഀ
, 𝐶஽ഀ

and 𝐶௠ഀ
 are plotted for the complete nonlinear 

wide flight regime for Mach number, 𝑀 = 0 𝑡𝑜 24 and is shown in the Fig. 3.7, 

Fig. 3.8 and Fig. 3.9 respectively. The stability analysis for the vehicle 

dynamics presents complicated behaviour to establish complete interpretation 

for the wide flight regime, and especially when transition takes from the 

subsonic to different sonic speeds and to high hypersonic speed. 

The different cases outlined in the Fig. 3.9 for 𝐶௠ഀ
 corresponds to the different 

stable and unstable points at different altitude and sonic region for the entire 

flight regime of the AHV. A negative value for 𝐶௠ is required for longitudinal 
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static vehicle stability and, positive and negative 𝐶௠ value refers nose-up and 

nose-down pitching moment respectively, and 𝐶௠ changes with variation in the 

angle-of-attack, 𝛼. 

 

Fig. 3.7 Incremental derivative 𝐶௅ഀ
 

 

Fig. 3.8 Incremental derivative 𝐶஽ഀ
 

Different cases of 𝐶௠ഀ
 are identified from the Fig. 3.9 and are represented in 

the Table 3.2. Hence 𝐶௠ഀ
 graph shown in Fig. 3.9 shows the static stability 

characteristics of the complete dynamic AHV model. The 0.9 M (Case A) is 

the most stable Mach number as per the 𝐶௠ഀ
 graph as shown in Fig. 3.9, so that 

the stability corresponds to near about critically stable with no oscillation as 

shown in the simulation Fig. 4.1, therefore there will be no imaginary part of 

the eigen values.  
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Fig. 3.9 Incremental derivative 𝐶௠ഀ
 

The 24 M (Case B) is the most unstable case having the positive 𝐶௠ഀ
 value. 

The 6 M (Case C) is the locally second most stable case having the negative 

𝐶௠ഀ
 value. And the 4 M (Case D) is the locally second most unstable case 

having the positive 𝐶௠ഀ
 value. The different Cases highlighted in Table 3.3 for 

the different Mach number, the lift increment derivatives, drag increment 

derivatives and pitch increment derivatives for the corresponding Mach number 

is given in the Table 3.4. 

Table 3.3 Mach Number with special stability characteristics 

Case No.       Cases                     Corresponding M         Sonic Region       Altitude (ft) Engine 

A 
 

Most stable 

(- 𝐶௠ഀ
 value) 

 
0.9 Subsonic 10000 Turbojet 

B 
 

Most unstable  

(+ 𝐶௠ഀ
 value) 

 
24     High 

Hypersonic 
100000 Rocket 

C 
 

Locally 2nd most stable 

(- 𝐶௠ഀ
 value) 

 
 6 Hypersonic 65000 Ramjet 

and 
scramjet 

D 

 

 Locally 2nd most 
unstable  

(+ 𝐶௠ഀ
 value) 

  4 Supersonic 50000 Ramjet 
and 
scramjet 
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Table 3.4 Mach Number with increment derivatives 

Mach No.          𝐶௅ഀ
                𝐶௅ഃ೐

             𝐶஽ഀ
            𝐶஽ഃ೐

               𝐶௠ഀ
               𝐶௠ഃ೐

 

0.9 0.0252 -0.0032 0.00005 0.00006 -0.0052   0.0024 
4 0.0134 0.005 -0.0009 -0.0039 0.0007   0.0006 
6 0.0147 -0.0006 0.0013 -0.0006 -0.0011 -0.000005 

24 0.0072   -0.002 -0.0009 -0.0007 0.0022   0.0002 
 

The highly nonlinear AHV, complex aerodynamic parameters for the entire 

flight regimes of the flight, wide flight regime and strong interactive coupling 

with time variation provides the way for the bifurcation approach to be 

analyzed and implemented. Also, continuation approaches can outline the 

topological behavior of the nonlinear dynamic model of AHVs and provide a 

fruitful analysis of the equilibrium states with the nonlinear fight regimes. 

3.6 Validation of Aerodynamic Model 

The comparison of the AHV model development with Angle of Attack (α) and 

Pitch Angle (θ, degree), versus the Mach numbers is shown in Table 3.5 for 

validation of the results.  

Table 3.5 Comparison of the selected Cases for the Aero data for AHV 

Cases 
Mach 
No. 
(𝑀) 

Aero 
Model 

Angle of Attack from [12] 
(α, degree)  

Angle of Attack for 
This work 
(α, degree) 

α=1 α=4 α=10 α=1 α=4 α=10 

A 0.9 

CL 0.021 0.08 0.23 0.02 0.08 0.23 

CD 0.02 0.03 0.06 0.02 0.03 0.06 

Cm -0.01 -0.03 -0.058 -0.01 -0.03 -0.058 

B 24 

CL 0.02 0.045 0.11 0.005 0.049 0.11 

CD 0.005 0.005 0.0225 0.005 0.005 0.024 

Cm 0 0.005 0.005 0 0.005 0.005 

C 6 

CL 0.004 0.054 0.15 0.004 0.054 0.15 

CD 0.008 0.013 0.038 0.008 0.012 0.038 

Cm 0 -2.5 -9 0 -0.004 -0.01 

D 4 

CL 0.025 0.049 0.1 0.004 0.048 0.1 

CD 0.02 0.025 0.044 0.02 0.025 0.044 

Cm -0.002 0 0.005 -0.002 0 0.005 
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The comparison of Angle of Attack (α) for the selected cases for the aero model 

of AHV shows almost overlapping of the data points as shown in Table 3.5. 

3.7 Chapter Summary 

The chapter presents the development of the dynamic Winged Cone model, 

GHV (Generic Hypersonic Vehicle) built with NASA Langley Research Centre 

and is selected for this research and study. The propulsion system is hypothetical 

proposed with group alignment of turbojet, ramjet and scramjet, and with rocket 

propulsion system incorporated into the model. Center-of-mass, centre-of-

gravity and with moment-of-inertia are included with model motion of 

equations for simulation. Fuel consumption affects the vehicles weight, centre-

of-gravity and the inertia products. X-axis of the body is completely aligned 

with the vehicle's thrust vector orientation. As a result, there is no thrust force 

component in the body's (Y and/or Z-axis). Due to this, it is expected that when 

fuel is spent, the centre of gravity will individually shift beside the body's X 

axis. Axis symmetrical modelling is used to create the winged cone model and 

axis of rotation is parallel to the model's wing tips and tail. The AHV control 

surfaces are elevon (left and right), canard and rudder, and they are tested for 

elevator deflections in relation to hinge lines and rudder deflections with trailing 

edge. The canards are either ignored or regarded ineffectual at high AHV 

speeds. The mathematical modelling of the AHV model uses the flat Earth 

approximation and the equations-of-motion are determined by using the 

Newton and Euler equations. 
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CHAPTER 4 

FLIGHT DYNAMIC SIMULATION AND TRIM ANALYSIS 

Flight spends most of its time in the longitudinal frame, making longitudinal 

flight dynamics crucial to flight maneuvers. The entire flight envelop, including 

velocity in the body-fixed X-plane and Z-plane, is considered to be longitudinal 

flight, as are the phases of level flight, climbing and descending, and pulling up 

and down. As a result, the trim and stability analysis should focus primarily on 

the longitudinal flight dynamics. The stability analysis and nonlinear simulation 

of the Generic AHV dynamic model are presented in this chapter. In the 

Bifurcation section, we perform a dynamic analysis of the AHV using the 

Bifurcation Method, taking into account the eigen values approach, and we 

analyze the longitudinal modes of the AHV flight. This covers the entire flight 

envelope for nonlinear simulation in [100] from Mach number M=0 to Mach 

number M=24. 

4.1 Flight Dynamic Nonlinear Simulation of AHV 

The aerodynamic analysis of AHV from the Fig. 3.4 shows the stability 

variation and issues with 𝑀 and 𝛼. Stable region with 𝑀 = 0 𝑡𝑜 4, there is 

increase in the stability from the 0 to 1 𝑀. Due to the increase in the gap, 𝑀 =

1 𝑡𝑜 4, decrease in the stability is observed. In the unstable region from 𝑀 =

4 𝑡𝑜 5, instability increases and then decreases. The stability region between 

𝑀 = 5 𝑡𝑜 13, the stability increases approximately for the 𝑀 = 5 𝑡𝑜 7 due to 

the increase in the 𝑀 and instability increases for the 𝑀 = 7 𝑡𝑜 13. The 

instability increases from 𝑀 = 13 onwards, shows the nonlinear stability. The 

𝐶௠ഀ
 graph shown in Fig. 3.9 shows the static stability characteristics of the 

complete dynamic AHV model. 

Trim angle-of-attack graph is shown in the Fig. 4.1 (a) with different elevator 

deflection (𝛿௘) i.e., 0, 1 and 2. At 𝑡 = 3.5 𝑠𝑒𝑐 the graph shown in Fig. 4.1 (b) 

shows the stable dynamics of the AHV at reaching 𝑀 = 3 𝑡𝑜 5. The simulation 



58 
 

becomes unstable after 𝑡 = 3.6 𝑠𝑒𝑐, when 𝑀 is more than 𝑀 = 4 and beyond. 

At 𝑡 = 3.9 𝑠𝑒𝑐 the system simulation shows the return to stable mode with 𝑀 =

5.5 (more then 𝑀 = 5), as per our system findings earlier for 𝑀 = 5 𝑡𝑜 13 

dynamics. 

The simulation shows small variation of 𝛼, approximately 𝛼 = 0 𝑡𝑜 2 degree in 

both stable and unstable mode, whereas there is large variation in pitch angle 

from 6 𝑡𝑜 10 degrees. This pitching motion corresponds to phugoid motion of 

the AHV, accompanied by the gain and loss of altitude between, approximated 

of 40 and 80 meters, respectively. Simulation of dynamic AHV model system 

at 𝑡 = 5.3 𝑠𝑒𝑐, shows the system crossing 𝑀 = 12.5, hence goes into unstable 

𝑀 region, with sharp nose up and altitude gain; were as 𝛼 is small, which 

indicates the phugoid motion going unstable. The stable and unstable 𝑀 region 

and qualitative analysis is shown by bifurcation analysis using eigen values in 

Chapter 5. 

In simulation, without oscillation stability cannot be checked. Based on the 

understanding developed on the preliminary analysis of aerodynamic data about 

the stability of the vehicle and ability of the simulation result showing any 

unstable flight region, makes bifurcation analysis mandatory for proper 

investigation for its stability. However small unstable flight region for any M 

and any angle of attack may be, but it may result into catastrophic failure of the 

vehicle upon very small disturbance at that point. 

 

              (a) 
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(b) 

Fig. 4.1. (a) Trim angle of attack graph with different elevator deflection i.e., 

0,1 and 2 (b) Simulation of the 3-DOF AHV. 

4.2 Validation through Trim Flight Conditions  

Validation of developed Generic AHV model is compared in [101] is given in 

Fig. 4.2 (a) and Fig. 4.3 (a) with the developed AHV model shown in Fig. 4.2 

(b) and Fig. 4.3 (b). The comparison of the AHV model development with α and 

θ (in degrees), versus Mach numbers is shown in Table 3.5 for validation of the 

results. 

  

(a) Open Literature [101]            (b) Developed Model 

Fig. 4.2 Mach No. (M) Vs Angle of Attack (α, degree) 
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(a) Open Literature [101]                        (b) Developed Model 

Fig. 4.3 Mach No. (M) Vs Pitch Angle (θ, degree) 

The comparison of Angle of Attack (α) for the selected cases for the aero model 

of AHV shows almost overlapping of the data points as shown in Table 3.5. 

4.3 Flight Dynamics Analysis for Different Sonic Velocities 

The vehicle dynamics stability study provides challenging behavior to develop 

comprehensive interpretation for the broad flight envelop, particularly when 

transition takes place from subsonic to varied sonic velocities and to high 

hypersonic speeds.  

Stability analysis of generic AHV longitudinal dynamics relies heavily on the 

pitching moment coefficient, and its variation with M for different α are shown 

with Fig. 4.4 (a) (Fig. 3.4). 

 

 

       (a)     
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                               (b) 

Fig. 4.4 Aerodynamic coefficient (a) Pitching moment 𝐶௠with 𝑀 

(b) Incremental derivative 𝐶௠ഀ
 

A negative value for 𝐶௠ is required for longitudinal static vehicle stability; and, 

positive and negative 𝐶௠ value refers nose-up and nose-down pitching-moment 

correspondingly, as 𝐶௠ changes with the change in 𝛼. Aerodynamics 

incremental derivative 𝐶௠ഀ
is obtained for the selected angle of attack, α for -1 

and 4 degrees for the complete flight envelop ranging M=0 to 24 and is shown 

in the Fig. 4.4 (b). 

Table 4.1 – Different simulation cases for AHV Flight Phase 

Cases Mach Number (𝑀) Flight Phase 

1 0.9 Ascent/Descent 

2 4 Ascent/Descent 

3 6 Ascent/Descent 

4 10 Level 

5 15 Level 

6 24 Level 

 

Different cases of 𝐶௠ഀ
 are identified from the Fig. 4.4 (b) for the entire flight 

envelop and are represented in the Table 4.1. These cases represent the different 

AHV flight phases of ascent, descent and level corresponding to the different 

Mach numbers. These cases are used for the longitudinal trim analysis and trim 

AHV simulation considering entire AHV flight envelop. 
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4.4 Trim Analysis of AHV for Different Operating Conditions 

Trim points are often where linear models are created and trim conditions 

specify the points at which control systems are designed and evaluated. As a 

result, we can use these trim conditions as an initial point for comparisons 

between other models and it can be implemented differently based on the actual 

flight data. Trim analysis is used to minimize a cost function with constraints 

[102] for nonlinear aircraft models developed considering aerodynamic and 

propulsion models. It presents a trim algorithm that is implemented for the 

simulation of the 6DOF aircraft model. It presents a trim algorithm which is 

implemented for the simulation of the 6DOF aircraft model. Using a bifurcation 

technique, the authors of [95] analyse the longitudinal dynamics of a parafoil 

with trim and stability qualities for a four-degrees-of-freedom (DOF) flying 

model. In order to construct nonlinear flight control laws, a model-based control 

structure is used for analysis of trim conditions [103]. For various control 

surface deflections, it displays a trimmed flight analysis performed with outer 

loop and inner loop equations in the 6DOF aircraft model. For both steady-state 

straight flight [104] and for turning, pull up, and pull overflight [105], an 

aircraft's trim analysis is described using equations of motion. This research is 

focused on developing a generic analytical framework for trim analysis, as well 

as its application to the trimming of 6 degree-of-freedom (DOF) conventional 

and unconventional aircraft for control power assessment. The flight maneuvers 

rely heavily on the longitudinal flight dynamics, which account for the vast 

majority of the flight time in the longitudinal frame. The full range of motion in 

flight is considered to be longitudinal flight, which encompasses not just 

velocity in the body's fixed X and Z planes but also level flight, ascent, descent, 

and pull-up and pull-down flight. This demonstrates that longitudinal flight 

dynamics should be prioritized in the trim and stability study. In this study, we 

examine the Generic AHV dynamic model's stability and do a trim analysis. 

Chapter 5 presents a dynamic analysis of the AHV flight utilizing the 

Bifurcation Method, taking into account the eigenvalues approach and 

longitudinal modes analysis for the entire flight envelope, covering Mach 

numbers from 0 to 24. 
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The solution for the trim or equilibrium states is obtained using the longitudinal 

nonlinear dynamic AHV model provided in Eqn. (3.1-3.7). The model is in one 

of five possible states, denoted by the variables V, γ, q, θ and α and, with V, γ 

and θ, and being treated as zero. In this case, the flight is straight, with γ =0 for 

a level flight, γ =a positive value for an ascent flight, and γ =a negative value 

for a descent flight, but the nose orientation is constrained to be constant. In 

order to acquire the trim states necessary to realize these trim criteria for the 

AHV flight, we set the left-hand side of the Eqn. (3.22-3.25) equal to zero and 

solve for the right-hand side, which yields the Eqn. (4.1-4.4). 

0 = (𝑇 cos𝛼 − 𝑞𝑆𝐶஽ − 𝑚𝑔 sin𝜃)/𝑚           (4.1) 

0 = (𝑇 sin𝛼 + 𝑞𝑆𝐶௅ − 𝑚𝑔 𝑐𝑜𝑠𝜃)/𝑚𝑉           (4.2) 

0 = 𝑞𝑆𝑐𝐶௠/2𝐼௬௬                  (4.3) 

𝑞 = 0                    (4.4) 

Trim-states are symbolized using * and, are obtained from Eqn. (4.1-4.3) and 

are given by the following Eqn. (4.5-4.7). 

𝐶஽
∗ = (𝑇∗ cos𝛼 − 𝑚𝑔 sin𝜃)/𝑞

∗
𝑆            (4.5) 

𝐶௅
∗ = (𝑚𝑔 𝑐𝑜𝑠𝜃 − 𝑇∗ sin𝛼)/𝑞

∗
𝑆            (4.6) 

𝐶௠
∗ = 0                   (4.7) 

In case of climbing condition of flight, from the Eqn. (4.5) we obtain the climb 

angle and climb rate respectively given by the following Eqn. (4.8-4.9). 

sin𝛾∗ = ൫𝑇∗ cos𝛼 − 𝑞
∗
𝑆𝐶஽

∗ ൯/𝑚𝑔            (4.8) 

(Vsin𝛾)∗ = ൫𝑇∗ cos𝛼 − 𝑞
∗
𝑆𝐶஽

∗ ൯𝑉∗/𝑚𝑔           (4.9) 

From the Eqn. (4.5), Eqn. (4.10) is formulated for the thrust relation. 

𝑇∗ = (𝑞ത∗𝑆𝐶஽
∗ + 𝑚𝑔 sin 𝜃)/ cos 𝛼              (4.10) 

The trim states obtained are used for the AHV model dynamic simulation by 

using them as initial conditions or initial parameters for the simulation and for 

implementing the bifurcation method. 
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4.5 Simulation of Trim Analysis of AHV 

 Simulation of the 3DOF generic AHV longitudinal dynamic nonlinear model 

is carried out and the states V, γ, α, θ, q and ℎ, are obtained at different Mach 

number and altitude. Here V is replaced by Mach number M and is obtained 

using M=V/a, here a is speed of sound. The simulation is carried out for the trim 

states or at equilibrium points as discussed above. Here 𝑉∗ and ℎ∗ are considered 

as constant value, 𝛾∗ , 𝛼∗ , 𝜃∗, q=0 and 𝑇∗ is used from the Eqn. (4.17-4.20) 

depending upon the different Mach number range, and is considered for all 

different trim or equilibrium points, as considered for the simulation cases, as 

shown in the Table 4.2. The linear longitudinal AHV model is obtained 

considering the Eqn. (4.7-4.13) and the state space representation is given by 

𝑥̇=A𝑥+Bu, were the state is represented as 𝑥=[𝑀,𝛾,𝛼,𝜃,𝑞,h]′ and the input as u=[ 

δe , PLA]. The dynamic 3DOF generic AHV longitudinal model simulation is 

carried out for the different Cases outlined in the Table 4.2 for different Mach 

number and corresponding altitude. The simulation is carried out for trim 

condition considering the elevator deflection, δe as zero for all Cases shown in 

the Table 4.2 and magnitude of PLA is considered as incremental value between 

0.1 to 1 for all cases. The aerodynamic coefficient with their derivatives from 

Table 4.3 are used in the simulation for the different Cases. 

The dynamic 3DOF generic AHV longitudinal model simulation is carried out 

for the different cases outlined in the Table 4.2. The simulation is carried out at 

six different Mach numbers and at corresponding altitude. The simulation cases 

are shown in Fig. 4.5 to Fig. 4.10.  

 

Table 4.2 – Different simulation cases for 3DOF AHV longitudinal model 

Simulation Cases Mach Number (𝑀) Altitude (ℎ), ft 
1 0.9 10,000 
2 4 50,000 
3 6 65,000 
4 10 10,0000 
5 15 10,0000 
6 24 10,0000 
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Table 4.3 – Mach Number with aerodynamic derivatives 

Mach No. 𝐶௅ഀ
    𝐶௅ഃ೐

 𝐶஽ഀ
 𝐶஽ഃ೐

 𝐶௠ഀ
 𝐶௠ഃ೐

 
0.9 0.0252 -0.0032 0.00005 0.00006 -0.0052 0.0024 
4 0.0134 0.005 -0.0009 -0.0039 0.0007 0.0006 
6 0.0147 -0.0006 0.0013 -0.0006 -0.0011 -0.000005 
10 0.0132 0.001 0.0008 -0.0004 -0.0004 -0.0003 
15 0.0115 0.0002 0.0002 -0.0005 0.0006 -0.00007 
24 0.0072 -0.002 -0.0009 -0.0007 0.0022 0.0002 

 

 

 

Fig. 4.5 - Dynamic Simulation Case 1 for M = 0.9 

 

 

Fig. 4.6 - Dynamic Simulation Case 2 for M = 4 
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Fig. 4.7 - Dynamic Simulation Case 3 for M = 6 

 

 

Fig. 4.8 - Dynamic Simulation Case 4 for M = 10 
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Fig. 4.9 - Dynamic Simulation Case 5 for M = 15 

 

Fig. 4.10 - Dynamic Simulation Case 6 for M = 24 

4.6 Flight Dynamic Stability Analysis of Trim Simulation 

At varying Mach numbers, the AHV model's dynamic stability is examined. 

With increasing AHV speed at Mach number M=0.9 and increasing height 

(Case 1 simulation shown in Fig. 4.5), the angle of attack, α, stabilizes near α 

=0.25 degrees. Both the flight path angle, γ, and the pitch rate, q, are held steady 

at around γ=10 degrees and q=0.035, respectively. Dynamic case simulations 

demonstrate stable behavior, with the angle of attack, α, converging towards the 

trim point. 

For Case 2, when the AHV speed is increased for Mach number M=4, and as 

altitude is gained, the angle of attack, α, exhibits a breakdown in behavior near 
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α=5 degrees, as shown in Fig. 4.6; however, the behavior remains constant in 

height beyond that point. Both the flight path angle (represented by γ) and the 

pitch rate (shown by q) exhibit breakdown behavior, remaining at a negative 

heading of γ=-0.2 degrees and trending upwards. Near the equilibrium or trim 

point, the angle of attack, α, exhibits divergence nature, indicating an unstable 

dynamic behavior in the simulation.   

The simulation results for Case 3 are displayed in Fig. 4.7; they indicate that 

when the AHV speed is increased for Mach number M=6, and as height is 

gained, the angle of attack, α, stabilizes near α=0.03 degrees. The pitch rate, q, 

is kept around q=0.005, while the flight path angle, γ, is kept at γ=10 degrees. 

Dynamic case simulations demonstrate stable behavior, with the angle of attack, 

α, converging towards the trim point. 

With increasing AHV speed at Mach number M=10 and increasing height, as in 

Case 4 of the simulation shown in Fig. 4.8, the angle of attack, α, stabilizes near 

α=0.02 degrees. Both the flight path angle, γ, and the pitch rate, q, are held 

steady at or near q=0.002. Dynamic case simulations demonstrate stable 

behavior, with the angle of attack, α, converging towards the trim point. 

For Case 5, with increasing AHV speed for Mach number M=15 and with the 

rise in altitude, the angle of attack, α, exhibits breakdown behavior at α=0.5 

degrees, as shown in Fig. 4.9; it subsequently demonstrates steady and level 

flying behavior in height. Breakdown behavior is seen in both the flight path 

angle, γ, and the pitch rate, q, with the former remaining positive up to γ=5 

degrees and the latter being observed at γ=-5 degrees and above. Near the 

equilibrium or trim point, the angle of attack, α, exhibits divergence nature, 

indicating an unstable dynamic behavior in the simulation. 

Case 6's simulation results are depicted in Fig. 4.10, where the angle of attack, 

α, exhibits a breakdown behavior near α=1 degrees as the AHV speed increases 

for Mach number, M=24, and with the gain in altitude, before settling into a 

pattern of constant and level flying above that altitude. Both the flight path 

angle, γ, and the pitch rate, q, exhibit breakdown behavior, with the former 

maintaining a negative heading of γ=-0.5 degrees. Near the equilibrium or trim 

point, the angle of attack, α, exhibits divergence nature, indicating an unstable 

dynamic behavior in the simulation. 
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4.7 Chapter Summary  

This chapter details the longitudinal trim and stability assessment of the 3DOF 

longitudinal AHV model using dynamic simulation. The 3DOF AHV model is 

simulated and subjected to trim analysis in a variety of scenarios using 

aerodynamic model analysis of incremental pitching coefficient for the 

corresponding Mach numbers. Stable simulations are achieved in cases 1, 3, and 

4 after a trim simulation is run using the AHV model for all 6 cases for Mach 

number M=0.9, M=6 and M=10, and for the cases 2, 5 and 6 for Mach number 

M=4, M=15 and M=24 shows unstable behavior, and the dynamic stability for 

the simulation cases is shown in Table 4.4. The 3DOF AHV model is then used 

to implement the bifurcation approach, further validating these cases. 

Table 4.4 – Dynamic stability for the simulation cases 

Simulation Cases Mach Number (𝑀) Stability 
1 0.9 Stable 
2 4 Unstable 
3 6 Stable 
4 10 Stable 
5 15 Unstable 
6 24 Unstable 

 

Comparative study is also carried out using dynamic simulation for trim 

condition and variable control surface deflection considering the elevator 

deflection and rudder deflection, δe and δr, for Cases 1, 3 and 4 shown in the 

Table 4.2. The 3DOF longitudinal AHV model is considered using the Eqn. 

(4.7-4.13) and the states represented as 𝑥=[𝑀,𝛾,𝛼,𝜃,𝑞,h]′ and input as u=[ δe , 

δr].  

The dynamic 3DOF longitudinal model simulation is carried out for the 

different Cases of Case 1, Case 3 and Case 4 as outlined in the Table 4.2 for 

different Mach number, M = 0.9, 6 and 10 for corresponding altitude. The 

aerodynamic coefficients with their derivatives from Appendix C Table C.1 are 

used in the simulation for the different Cases 1, 3 and 4, and their dynamic 

simulation is shown in Appendix C with Fig. C.1-C.4, Fig C.5- C.8 and Fig C.9- 

C.12 respectively. The 𝛼 trim comparison is shown in Fig. 4.11 and Fig. 4.12 

for the different Cases, Case 1, Case 3 and Case 4. 
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Fig. 4.11 - Dynamic Simulation for 𝛼 trim, Case 1 and Case 3  

 

Fig. 4.12 - Dynamic Simulation for 𝛼 trim, Case 4 
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CHAPTER 5 

BIFURCATION METHOD ANALYSIS 

Bifurcation technique involves Continuation Based Algorithm (CBA) using 

AUTO-07p in [14], uses a nonlinear dynamical system to compute the steady 

states described using the first order ordinary differential equation (ODE) given 

by, 𝑥
˙

= 𝑓(𝑥, 𝑈), here 𝑥, 𝑈 and 𝑓 are vectors, and of 𝑛 state variables, 𝑚 control 

parameters and nonlinear function respectively. The CBA determines the 

solution of 𝑥
˙

= 𝑓(𝑥, 𝑈) by finding the solution of the algebraic nonlinear 

equations given by, 𝑥
˙

= 𝑓(𝑥, 𝑢, 𝑝) = 0 with one parameter is varied 𝑢 ∈ 𝑈 and 

at the same time keeping other parameters 𝑝 ∈ 𝑈 fixed. Considering the free 

parameter 𝑢 is varied in range, and keeping control parameter 𝑃 fixed using 

CBA, the bifurcation technique tracks all possible trim states 𝑥* in a manner 

that 𝑓(𝑥 ∗, 𝑢, 𝑝) = 0 is fulfilled. 

5.1 Bifurcation Software AUTO-07p 

Several software programmes exist specifically to examine non-linear 

dynamical systems, such as MatCont in [106]-[107] and KRIT in [108]. Most 

people are familiar with the AUTO97 package, a FORTRAN program and 

AUTO2000, a C program; developed at Concordia University in Canada by a 

group led by Prof. Eusebius Doedel for bifurcation analysis of non-linear 

dynamical systems. As of the year 2021, the AUTO-07p in [109] package is the 

most up to date of these options. Versions of the AUTO package and how to use 

them are described in [110]-[111]. AUTO-07p is an application written in 

FORTRAN and designed to run on UNIX. In order to make the AUTO package 

work on the WINDOWS platform, a group led by Professor Bard Ermentrout at 

the University of Pittsburgh in the United States created XPPAUT in [112]. 

Professor Bard Ermentrout's textbook in [113] provides a detailed explanation 

of this set up in addition to a user's guide. The AUTO in [114] served as 
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inspiration for the development of a MATLAB system toolbox called the 

Dynamical System Toolbox in [115]. The team at Concordia University in 

Canada, led by Professor Doedel, created AUTO, the most well-known software 

for bifurcation analysis of homogeneous ordinary differential equations.  

For this research we are using the latest AUTO-07p in [14] software (open 

source) to implement the bifurcation analysis of AHV. The guidebook in [14] 

of AUTO-07p can be used for the installation.  The equation-file .f90 file and 

the constants-file c. file are the two most important input files and these two 

documents are with the same name. For the continuation calculation, we 

frequently rely on the c. file. AUTO generates the usual output along with two 

additional files. Some of the many types of points displayed in the default output 

are illustrated below.  

 

Fig. 5.1 AUTO-07p Command & output window, and editor 

There are three distinct file formats that can be generated. The first is the b. file 

containing the bifurcation diagram, second is the d. file containing the 

continuation procedures with step size information and with the eigenvalue 

information of Jacobians, and third the s. file is the solution which includes the 

solution information. As shown in Fig. 5.1, the AUTO-07p's initial working 

environment consists of three windows: an editor, a command window, and an 

output window. The .f90 and c. files are the primary focus of the editor window 

and it can also be used to access b. and s. files that are generated. 
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5.2 Bifurcation Diagram for Different Operating Conditions and Control 

Inputs 

The bifurcation analysis can be implemented for the AHVs for varying 

operative flight conditions and different sonic velocity and control inputs. 

Applying SBA on an extremely non-linear system could provide novel analysis 

for the dynamic models of AHVs. Due to the wide flight regimes of the AHVs, 

continuation technique can provide exceptional analysis for the flight dynamics 

and control. Implementing SBA to AHVs, the translational and kinematics 

equations with the variables 𝑉, 𝛼, 𝑞, 𝜃 and h can be represented. The importance 

of Mach number (𝑀) in AHVs is vital due to the different flight regimes of the 

hypersonic flight, hence 𝑀 = V/s, were 𝑉 is velocity and 𝑠 is speed of sound. 

Therefore, the states variables and control parameters are, 𝑥 = [𝑉 𝛼 𝑞 𝜃 ℎ]ᇱ and 

𝑢 = [𝛿𝑒]ᇱ, were 𝛿𝑒 is the elevator deflection. The parameter varied affects 

directly the 𝛼 angle of attack of the AHVs and the parameters 𝑝 in the 

continuation are fixed during the analysis. The SBA analysis of the AHV 

dynamic behavior is represented by bifurcation diagram, which helps in the 

understanding and depicting the flight dynamics. EBA is examined for the level 

and straight flight at trim conditions, and stability is investigated for the 3DOF 

longitudinal dynamic model of AHV given by the Eqn. (3.1-3.7). 

𝑉̇ =
ଵ

௠
(𝑇 cos𝛼 − 𝑞𝑆𝐶஽ − 𝑚𝑔 sin𝜃)            (5.1) 

   𝛼̇ = 𝑞 − ቀ
ଵ

௠௏
ቁ (𝑇 sin𝛼 + 𝑞𝑆𝐶௅ − 𝑚𝑔 cos𝜃)           (5.2) 

   𝑞̇ = 𝑀/(2𝐼௬௬)               (5.3) 

   𝜃̇ = 𝑞                (5.4) 

   ℎ̇ = 𝑉 sin𝜃               (5.5) 

Here the aerodynamic model 2 is used for the aerodynamic coefficient 𝐶௅, 𝐶஽ 

and 𝐶௠ for the bifurcation analysis of the longitudinal dynamics of AHV. For 

the Eqn. (5.1-5.5), equilibrium values are obtained equating to 0 for the left hand 

side of the equation and solving the states (𝑉, 𝛼, 𝑞, 𝜃, ℎ). These equilibrium 

points are required for the bifurcation method for the continuation approach to 
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start. For simplicity setting 𝛼 = 𝜃 = 0, in Eqn. (5.1-5.5) are solved, to obtain 

the equilibrium solution with ℎ = ℎ଴ and are given by Eqn. (5.6-5.8), 

   𝑇(ℎ଴) = 𝑞𝑆𝐶஽               (5.6) 

   𝑉଴ = 𝑞𝑆𝐶௅/(𝑚𝑔)              (5.7) 

   𝑀 = 0                (5.8) 

Considering the equilibrium solution in the Eqn. (5.6-5.8) the thrust is equal to 

the drag, gives the value of thrust at starting equilibrium point, and 𝑉଴ is the 

initial value used in the bifurcation at different equilibrium altitudes setting ℎ =

ℎ଴, and hence corresponding to 𝛼, 𝑞 𝑎𝑛𝑑 𝜃 bifurcation diagram is obtained 

using the Eqn. (5.2-5.4) in AUTO-07p. The bifurcation diagram is plotted for 

𝛼 𝑎𝑛𝑑 𝜃.    

The bifurcation diagram for the different cases shown below represents the 

collection of the different equilibrium points which provides the value of the 

states relative to the selected parameter. These solution branches are made of 

different equilibrium points indicating no change in the state variables occurring 

at the individual points along the curve. The bifurcation diagram is obtained 

using the AUTO-07p software, where the output shows the numbering which 

means that, it shows all the equilibrium points for the corresponding range of 

input variables with the color-coded stability information, where black 

corresponds to stable and red to unstable. Here negative and positive eigen 

values corresponds to dynamic system stability and indicate the stable and 

unstable system behavior. The information is reflected by AUOT-07p by 

indicating the black color to stable and red color to unstable in the bifurcation 

diagram. 

Bifurcation analysis for the AHV at Mach number, M=0.9 and altitude, h=10000 

ft, is carried out and the Bifurcation Diagram obtained is shown in the Fig. 5.2, 

and it illustrates how the equilibrium solution point shifts between -120 and 120 

deflections when the elevator deflection, 𝛿𝑒 value changes. The AHV stability 

and bifurcation is examined by focusing on the varying the value of system 

parameter 𝛿𝑒 and making another parameter, thrust coefficient constant. 
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Implementing the AUTO-07p code, we observe the numerous bifurcations 

occurrences for the AHV’s states in consideration to the parameter variation.  

   

                                (a)                                                          (b) 

 

     (c) 

Fig 5.2 Bifurcation Diagram with varying 𝛿௘ for M=0.9 (Case A) 

Here the angle-of-attack, 𝛼 given in the Fig. 5.2 (a), when deflected for 𝛿𝑒 from 

00 to 120 degrees, it indicates stable behaviour for the vehicle, and when 

deflected from 00 to -120 degrees down it shows stable action. 

The pitch angle, 𝜃 as shown in the Fig. 5.2 (b), for the elevator deflection, 𝛿𝑒, 00 

to -120 degrees the variation is stable between -4.5 to 1.5 radians and for the -

1.5 to -4.25 radians. At each of the 24 possible equilibrium points, AUTO-07p 

generates result demonstrating stable dynamics for all eigenvalues. For the pitch 

angle, 𝜃, from the bifurcation diagram, the points 7 and 8 in the Fig. 5.2 (b) 

show the nose going up, whereas points 19 and 20 show the nose going down. 

And for the elevator deflection 50, the vehicle will have 600 nose-down and 600 

nose-up directional changes at various periods of the vehicle's climb or fall. 
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Table 5.1 – Bifurcation result with forward run in AUTO-07p 

BR PT TY LAB 𝜹𝒆 (𝒓𝒂𝒅) 
L2-

Norm 
𝜶 (𝒓𝒂𝒅) 𝜽 (𝒓𝒂𝒅) 𝒒 

1 1 EP 1 0.00000 1.57080 0.00E+00 
-

1.570E+0 
0.00E+00 

1 20  2 1.61874 1.42901 1.30E-02 
-

1.428E+0 
2.90E-29 

1 40  3 3.61065 1.25028 2.91E-02 -1.25E+0 9.51E-31 

1 60  4 5.60149 1.06042 4.51E-02 
-

1.059E+0 
-2.70E-29 

1 80  5 7.58995 0.84797 6.11E-02 
-8.46E-

01 
1.42E-27 

1 100  6 9.57201 0.58508 7.71E-02 
-5.79E-

01 
-1.191E-

26 

1 120  7 11.4416 0.09220 9.22E-02 
-3.05E-

03 
4.91E-27 

1 121 LP 8 11.4416 0.09215 9.22E-02 1.38E-05 5.74E-28 
1 140  9 10.4622 0.42539 8.43E-02 4.17E-01 7.73E-29 
1 160  10 8.48822 0.73837 6.84E-02 7.35E-01 -2.00E-27 

1 180  11 6.50178 0.96809 5.24E-02 9.67E-01 
-4.068E-

27 
1 200 EP 12 4.51178 1.16626 3.63E-02 1.17E+00 -2.19E-28 

 

Table 5.2 – Bifurcation Result with backward run in AUTO-07p 

BR PT TY LAB 𝜹𝒆 (𝒓𝒂𝒅) L2-Norm 𝜶 (𝒓𝒂𝒅) 𝜽 (𝒓𝒂𝒅) 𝒒 

1 1 EP 1 
0.00E+00 1.57E+00 0.00E+00 

-
1.57E+00 0.00E+00 

1 20  2 
-

1.62E+00 1.71E+00 -1.30E-02 
-

1.71E+00 9.76E-29 

1 40  3 
-

3.61E+00 1.89E+00 -2.91E-02 
-

1.89E+00 3.47E-29 

1 60  4 
-

5.60E+00 2.08E+00 -4.51E-02 
-

2.08E+00 7.11E-28 

1 80  5 
-

7.59E+00 2.30E+00 -6.11E-02 -2.29478 -3.05E-27 

1 100  6 
-

9.57E+00 2.56E+00 -0.077102 -2.55934 -9.77E-27 

1 120  7 
-

1.15E+01 3.12E+00 -0.092300 -3.11735 -3.23E-26 

1 121 LP 8 
-

1.15E+01 3.14E+00 -0.092327 -3.14158 -3.20E-29 

1 140  9 
-

1.03E+01 3.59E+00 -0.083054 -3.59342 -3.03E-24 

1 160  10 
-

8.34E+00 3.90E+00 -0.067136 -3.89795 -1.03E-25 

1 180  11 
-

6.35E+00 4.13E+00 -0.051132 -4.12518 -1.55E-26 

1 200 EP 12 
-

4.36E+00 4.32E+00 -3.51E-02 
-

4.32E+00 4.09E-27 

 

The pitch rate, 𝑞 as shown in the Fig. 5.2 (c), for the elevator deflection, 𝛿𝑒, 00 

to -120 degrees the variation is stable and when deflected 𝛿𝑒 from 00 to 120 
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degrees, it also indicates stable behaviour for the vehicle, with ranging in a 

stable magnitude for the 𝛿𝑒 change. 

Table 5.3 – Eigen values for M=0.9 using Bifurcation in AUTO-07p 

BR PT TY Iteration TY Details Eigen values Stability 

1 1 EP 1 
Hopf Function: 
1.19248E+00 

-3.05831E-02 
Stable:3 

     
-1.19248E+00, 
3.12365E+00  

     
-1.19248E+00, 
-3.12365E+00  

1 121 LP 5 Fold Function: 1.54337E-04 -4.08777E-07 Stable: 3 

    Fold Function: -2.83356E-01 
-1.20756E+00, 
3.12940E+00  

    Fold Function: -3.89938E-03 
-1.20756E+00, 
-3.12940E+00  

    BP Function:  -6.02481E-02   
    Hopf Function: -1.20756   

1 200 EP 3 Fold Function: -9.95546E-01 2.79319E-02 Stable: 2 

    BP   Function: -6.35212E-01 
-1.22165E+00, 
3.13491E+00  

    
Hopf Function: -1.22165E 

-1.22165E+00, 
-3.13491E+00  

 

Running the AUTO-07p code for the bifurcation of AHV using CBA, we obtain 

the bifurcation diagram as shown in Fig. 5.2. We obtain the simulation results 

of forward run and backward run for the implemented bifurcation method and 

is shown in Table 5.1 and Table 5.2 respectively. These tabular results show the 

bifurcation diagram data points for different run with iterations, indicating the 

different values of 𝛼, θ and 𝑞. Here BR, PT, TY and LAB are the Bifurcation 

Result, Bifurcation Point, Bifurcation Type and Labelled Solution respectively. 

Here for different range (1 to 200) of PT’s, the forward and backward run are 

carried out with different iterations and corresponding L2 NORM values for the 

different selected parameters are determined. It shows that the result is obtained 

for 200 different points with different iterations and step size at each AUTO-

07p run and LP bifurcation type is obtained at 121 run; this indicates the 

presence of bifurcation point as fold for the ordinary differential equation 

present in the AHV dynamics. The eigen values determined from the forward 

and backward run are shown in the Table 5.3 for the corresponding PT for 1, 

121 and 200. This shows the different eigen values with respective to the 

different iteration and the stability of the AHV with the Bifurcation TY. It shows 

the presence of Hopf function at PT 1 and Iteration 1; and Fold, BP and Hopf 
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function at PT 121, 200 and Iteration 5, 3; with the eigen values with each 

iteration. The stability information can be determined with the corresponding 

each iteration with the eigen values. Considering the trim condition and iteration 

1 the eigen values with the dynamic stability information is shown in the Table 

5.4 indicating the AHV stability information at the given Mach Number. It 

shows that there are three eigen values with one eigen value with real number 

and the two eigen values with complex in nature, as shown in the Table 5.4; and 

the corresponding damping ratio and the frequency at the given Mach Number 

is determined indicating the short period mode behaviour of the AHV. For the 

eigen values considered the pole-zero plot is obtained and is shown in the Fig. 

5.3, which outlines the stable behaviour of the AHV at the Mach Number, 

M=0.9, as all the poles lies at the LHS plane of the stability axis. Thus, it can be 

said that using the Bifurcation Method the AHV’s dynamically stability can be 

determined and at M=0.9 it is dynamically stable.  

Table 5.4 – Dynamic stability using Bifurcation analysis for  

Mach Number, 𝑀 = 0.9 

Mach No. (𝑀) Eigen values Damping Ratio (ζ) Frequency (ωn) Stability 

0.9 

-3.05831E-02 

0.356 3.342 
Dynamically 

Stable 

-1.19248E+00, 
3.12365E+00 

-1.19248E+00, 
-3.12365E+00 

 

 

Fig. 5.3 Pole-zero plot for Mach Number, 𝑀 = 0.9 

Considering the simulation carried out for the AHV at the Mach Number, 

M=0.9 it shows, most stable behavior for it, using the Bifurcation Method; and 

their bifurcation diagrams are nonlinear in nature but are mirror images in the 
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vertical plane and about 𝛿௘ = 00. This shows that for the different Mach number 

of the AHV’s flight can be considered to determine the dynamical stability of 

the vehicle ranging from Mach number, M=0 to 24. 

The bifurcation diagram with varying 𝛿௘ for M=0.9 (Case A) shown in Fig. 5.2 

(a), shows the 𝛼 variation with equilibrium solution point to change in the 

different values of 𝛿𝑒 ranging from -120 to 120 deflection. Here 𝛼 is stable for 

the region of 𝛿𝑒 deflection from 00 to 120 and unstable for the 𝛿𝑒 deflection 

from 00 to -120. Similar Fig. 5.2 (b) shows the 𝜃 variation from -4.5 to 1.5 

radians with the different values of 𝛿𝑒 ranging from -120 to 120 deflection 

corresponding to stable 𝜃 region from -1.5 to 1.5 and unstable 𝜃 region from -

1.5 to -4.25 radians. 

The bifurcation diagram with varying 𝛿௘ for M=24 (Case B) shown in Fig. 5.4 

(a), shows the 𝛼 variation with equilibrium solution point to change in the 

different values of 𝛿𝑒 ranging from -160 to 160 deflection. Here 𝛼 is stable for 

the region of 𝛿𝑒 deflection from 00 to 160 and unstable for the 𝛿𝑒 deflection 

from 00 to -160. Similar Fig. 5.4 (b) shows the 𝜃 variation from 0.65 to -3.65 

radians with the different values of 𝛿𝑒 ranging from -160 to 160 deflection 

corresponding to stable 𝜃 region from 0 to -3.65 and unstable 𝜃 region from -

1.5 to 0.65 radians. 

For the bifurcation diagram with varying 𝛿௘ for M=6 (Case C) shown in Fig. 

5.5 (a), shows the 𝛼 variation with equilibrium solution point to change in the 

different values of 𝛿𝑒 ranging from -200 to 200 deflection. Here 𝛼 is stable for 

the region of 𝛿𝑒 deflection from 00 to 200 and unstable for the 𝛿𝑒 deflection 

from 00 to -200. Similar Fig. 5.5 (b) shows the 𝜃 variation from -1.1 to -2 radians 

with the different values of 𝛿𝑒 ranging from -200 to 200 deflection 

corresponding to stable 𝜃 region from -1.65 to -2 and unstable 𝜃 region from -

1.65 to -1.25 radians.  

For the bifurcation diagram with varying 𝛿௘ for M=4 (Case D) shown in Fig. 

5.6 (a), shows the 𝛼 variation with equilibrium solution point to change in the 

different values of 𝛿𝑒 ranging from -50 to 50 deflection. Here 𝛼 is unstable for 

the complete region of 𝛿𝑒 deflection from -50 to 50. Similar Fig. 5.6 (b) shows 

the 𝜃 variation from -7.5 to 4.5 radians with the different values of 𝛿𝑒 ranging 
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from -50 to 50 deflection corresponding to stable 𝜃 region from -1.5 to -7.5 and 

unstable 𝜃 region from -1.5 to 4.5 radians.  

The bifurcation diagram with varying 𝛿௘ for M=10 (level flight at 100000 ft) 

shown in Fig. 5.7 (a), shows the 𝛼 variation with equilibrium solution point to 

change in the different values of 𝛿𝑒 ranging from -15.50 to 15.50 deflection. 

Here 𝛼 is stable for the region of 𝛿𝑒 deflection from 00 to -120 and unstable for 

the 𝛿𝑒 deflection from 00 to -120. Similar Fig. 5.7 (b) shows the 𝜃 variation from 

-1 to -2.25 radians with the different values of 𝛿𝑒 ranging from -15.50 to 15.50 

deflection corresponding to stable 𝜃 region from -1.56 to -2.25 and unstable 𝜃 

region from -1.56 to -1 radians. 

       

           (a)                                                (b) 

Fig. 5.4 Bifurcation diagram with varying 𝛿௘ for M=24 (Case B) 

        

            (a)                                     (b) 

Fig. 5.5 Bifurcation diagram with varying 𝛿௘ for M=6 (Case C) 
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            (a)                                      (b) 

Fig. 5.6 Bifurcation diagram with varying 𝛿௘ for M=4 (Case D) 

      

          (a)                                      (b)  

Fig. 5.7 Bifurcation diagram with varying 𝛿௘ for M=10 

5.3 Flight Dynamic Analysis for Different Operating Conditions using 

Bifurcation Method 

Using the bifurcation method to demonstrate global stability presents a chance 

to improve vehicle control design parameters. The technique provides 

quantitative data on global stability and suggests ways to control the aircraft's 

nonlinear behaviour. The technique uses CBA (Continuation-Based-Algorithm) 

to study the nonlinear-dynamical models considering ODE (Ordinary-

Differential-Equation) of first order and determine the steady states and 

different equilibrium points, by using the software AUTO-07p [14]. To identify 

all trim states for an ODE expressed as a function of states variables and control 

parameters given by, 𝑥̇=𝑓(𝑥,𝑢), the solution of the nonlinear equation is 

specified by, 𝑥̇=𝑓(𝑥,𝑢,𝑝)=0, where p is a constraint held constant while the next 

parameter u is varied. CBA is an implementation of the standard Bifurcation 
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Analysis (SBA) technique. By taking both the variable and constant parameters 

into account, the continuation algorithm generates all possible solutions with 

trim states for the system and calculates the specifics of the local stability at 

each trim state. 'Bifurcation Points' are used to describe or illustrate transitions 

in the branch stability of the trim state’s solution. These 'Bifurcation Points' 

prominently display the occurrence or behavior of an unstable dynamical 

system by indicating the instant at which the eigenvalues of the system migrate 

from the left half to the right half of the complex plane, indicating instability.  

SBA is used to the nonlinear dynamic model of the 3DOF longitudinal AHV to 

accomplish the approach. The dynamic model represented for the 3DOF AHV 

model simulation is used for the method implementation, and the state variables 

are given by 𝑥=[𝑀,𝛾,𝛼,𝜃,𝑞,ℎ]′. Because of these simplifications, the state 

variable evaluated for the analysis is 𝑥=[𝛼,𝜃,𝑞]′, where, h, and M are constants 

and where q is assumed to vary by only very small amounts. When applied to 

the AHV, SBA yields a bifurcation diagram containing eigen values for each 

scenario, illuminating the avionics' dynamical behaviour in flight. The eigen 

values derived from the bifurcation analysis can be used to investigate the 

longitudinal dynamic model's stability. Depending on these eigen values, the 

system's behaviour could be stable or unstable. Table 5.5 displays the eigen 

values obtained via the bifurcation method for the various Mach number cases. 

Fig. 5.8 displays the pole-zero map obtained from the eigen values in order to 

comprehend the system stability behaviour. Cases 1, 3, and 4 exhibit stable 

conduct as evidenced by the poles plot, while Cases 2, 5, and 6 exhibit unstable 

behaviour as evidenced by the poles lying on the RHS-plane. 

Table 5.5 – Calculated Eigen values via the Bifurcation Approach 

Simulation 
Cases 

Mach 
Number (𝑀) 

Eigen Values Stability 

1 0.9 -0.0305831, -1.192±j3.123 Stable 
2 4 1.69283, -0.009158, -2.49717 Unstable 
3 6 -0.006419, -0.021±j2.501 Stable 
4 10 -0.00523866, -0.0086±j0.073 Stable 
5 15 0.123599, -0.003423, -0.150586 Unstable 
6 24 3.11523, -0.002149, -3.19905 Unstable 
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Fig. 5.8 - System Poles plot for the simulation cases 

The corresponding longitudinal modes for the simulation cases 1, 3 and 4 are 

obtained and is shown in the Table 5.6. For cases 1 and 4 at Mach number M=0.9 

and M=10 its shows short period behavior for the AHV flight, and for case 3 at 

Mach number M=6 its shows long period or phugoid behavior for the AHV 

flight. 

Table 5.6 – Simulation cases with longitudinal modes 

Cases 
Mach 

Number 
Frequency 
(rad/sec) 

Damping 
Ratio 

Periods 
(sec) 

Numbers of cycles to 
damp to half 

amplitude of the 
respective modes 

1 0.9 0.35665 0.3817 17.6081 2.8506, short period 
2 4 - - - - 
3 6 0.00846 0.0084 742.2356 128.6150, long period 
4 10 0.11803 0.1188 53.2044 9.1551, short period 
5 15 - - - - 
6 24 - - - - 

The cases 2, 5 and 6 at Mach number M=4, M=15 and M=24 indicates unstable 

or instability behavior for the AHV flight. This unstable Mach number for the 

AHV flight can be made stable with the design of suitable control design 

methods, and hence the entire flight envelops of the AHV from Mach number 

M=0 to 24 can have a stable flight. 

5.4 Chapter Summary 

The topological behavior of the generic AHV model provides the quantitative 

assessment of the equilibrium states for the entire wide flight regimes of the 



84 
 

dynamic AHV model with high altitude and Mach number. The static and 

dynamic stability and global stability of the AHV model using Bifurcation 

Analysis is carried out. And the flight dynamics and stability analysis for the 

generic AHV model using 3-DOF dynamic simulation model is presented with 

the Bifurcation Method. The analysis shows that the Bifurcation Method is a 

powerful tool to analyze the stability regions with the different equilibrium 

points of the chosen parameters. 

Bifurcation analysis of Longitudinal dynamics for Generic AHV model 

considering CBA has been implemented for AHV dynamics at Mach Number, 

M=0.9, for different choices of elevator deflection and with the aim to observe 

the control effects. Bifurcation technique is implemented with the 3DOF 

longitudinal AHV model using the AUTO-07p platform for the different 

elevator deflection, 𝛿௘= -120 and 120. The Bifurcation Diagram obtained for the 

data points with different forward and backward runs with the different 

iterations, shows the parameter values of 𝛼, θ and 𝑞. The forward and backward 

run shows the presence of Hopf function at PT 1 with iteration 1, and Fold, BP 

and Hopf function at PT 121, 200 and iteration 5, 3; with the eigen values with 

each iteration. The stability information is determined with the corresponding 

iteration of the eigen values, showing the dynamic stability information. The 

eigen values determined indicate the short period mode behaviour of the AHV 

indicating the stable behaviour at the Mach Number. The Method shows the 

AHV’s dynamically stability determined at M=0.9 is stable. This shows that for 

the different Mach Number of the AHV’s flight, Bifurcation is promising 

method to determine the dynamical stability of the vehicle for the Mach number 

ranging from M=0 to 24. Finally, the paper outlines Bifurcation Methodology 

application intended for the investigation of the dynamic stability of the Generic 

AHV. 

Trim analysis eigen values are calculated and related poles are established for 

all cases using the bifurcation approach, confirming that Cases 1, 3, and 4 are 

stable whereas Cases 2, 5, and 6 are unstable. Cases 1 and 4 exhibit short-period 

behavior, as seen by the AHV's longitudinal modes, while case 3 exhibit long-

period, or phugoid, behavior. The given bifurcation analysis results show a 

possible method for identifying stable trim points. 
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CHAPTER 6 

CLOSE LOOP SIMULATION OF AHV 

The complications and difficulties with hypersonic vehicles' aerodynamics 

explain the many aerodynamic phenomena that occur at various altitudes and 

high speeds of flight. The AHV hypersonic flight has issues due to the huge 

flight envelope and the dynamical interaction within the many hypersonic flight 

regimes. This necessitates the use of dynamic analysis of the AHV and flight 

dynamics analysis with stability analysis. This chapter presents the linear model 

analysis with the linearized aerodynamic coefficient and covers the full AHV 

flight regime. Nonlinear dynamic AHV model is also presented with the 

nonlinear aerodynamic coefficient data. The linearized AHV model is used with 

the linear aerodynamic model, thrust engine model and atmospheric model to 

develop the linear 6DOF dynamic AHV model for simulation. With the 

developed linear model, stability is analyzed with the classical control method 

like root locus to understand the dynamic behavior of the zero poles location 

and hence stability, and controller design approaches can be implemented. 

Further state feedback approach is used to analysis open loop and closed loop 

response of the linear 6DOF dynamic AHV model, indicating the closed loop 

stability of the AHV. The control design is carried out using the linear state 

feedback control law design using pole placement, and controllers like PI, PD 

and PID are used for the controller development for AHVs. The linear controller 

is designed for the AHV for different control inputs and stability is analysed. 

6.1 Flight Dynamics Analysis for Different Control Inputs 

The AHV's linear aerodynamics model incorporates the various propulsion and 

engine models and is obtained over the entire flight regime. The linearized 

equations are taken into account while designing the controller and stability 

analysis for the AHV's 6DOF dynamic simulation model.   
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Considering the nonlinear AHV model given by Eqn. (3.29-3.37) and Eqn. 

(3.38-3.40) are linearized using small disturbance theory in [99] and with steady 

and wing level flight, and with no sideslip is considered as reference condition 

with steady and perturbated. The linearized model derived here with the 

longitudinal and lateral dynamics model are decoupled from each other. The 

linear model obtained here is considered for the case of level and straight flight 

at fixed velocity and altitude considering the bank angle zero. The linear AHV 

model is expressed with the state space design approach and the model is 

represented by Eqn. (6.1-6.2), and here 𝐴௡ is the normal acceleration of the 

AHV. 

    𝑋
˙

= 𝐴𝑋 + 𝐵𝑈              (6.1) 

    𝑌 = 𝐶𝑋 + 𝐷𝑈              (6.2) 

The state space variables are given by Eqn. (6.3-6.5).  

                                                    𝑋 = [𝑉 ℎ 𝛼 𝜃 𝑞 𝑇 𝛽 𝜙 𝑝 𝑟]′            (6.3) 

             𝑈 = [𝑃𝐿𝐴 𝛿𝑎 𝛿𝑒 𝛿𝑟]′             (6.4) 

             𝑌 = [𝐴௡ 𝑞 𝛼]′              (6.5) 

6.2 Linear Aerodynamic Model  

The nonlinear aerodynamic coefficient of AHV is given by Eqn. (3.41-3.52), 

are linearized for the 6DOF linear model simulation considering at Mach 

number, 𝑀 = 5. The linearized equations for the dynamic simulation of linear 

AHV model is obtained using analytical method considering fixed point for 

linearization and ignoring the higher terms, the reduced and the linearized 

model is obtained by Eqn. (6.6-6.11). 

   𝐶௅ = 𝐶௅,ఈ. 𝛼 + 𝐶௅,ఋ௘ . 𝛿௘             (6.6) 

   𝐶஽ = 𝐶஽,ఈ. 𝛼 + 𝐶஽,ఋ௘ . 𝛿௘             (6.7) 

   𝐶௠ = 𝐶௠,ఈ. 𝛼 + 𝐶௠,ఋ௘ . 𝛿௘ + 𝐶௠௤ ቀ
௤௖

ଶ௏
ቁ            (6.8) 
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   𝐶௒ = 𝐶௒,ఉ. 𝛽 + 𝐶௒,ఋ௔. 𝛿௔ + 𝐶௒,ఋ௥ . 𝛿௥            (6.9) 

 𝐶௟ = 𝐶௟,ఉ . 𝛽 + 𝐶௟,ఋ௔. 𝛿௔ + 𝐶௟,ఋ௥ . 𝛿௥ + 𝐶௟௥ ቀ
௥௕

ଶ௏
ቁ + 𝐶௟௣ ቀ

௣௕

ଶ௏
ቁ               (6.10) 

       𝐶௡ = 𝐶௡,ఉ. 𝛽 + 𝐶௡,ఋ௔. 𝛿௔ + 𝐶௡,ఋ௥ . 𝛿௥ + 𝐶௡௥ ቀ
௥௕

ଶ௏
ቁ + 𝐶௡௣ ቀ

௣௕

ଶ௏
ቁ          (6.11) 

and ቀ
௤௖

ଶ௏
ቁ is non-dimensional pitch rate. The linear aerodynamic coefficient 

model obtained is used for the 6DOF linear simulation for the AHV model. 

Aerodynamics coefficient, dynamics, as stated in [13], [116], are implemented 

to develop aerodynamic model of total lift coefficient, drag coefficient, pitching 

moment coefficient, side force coefficient, rolling moment coefficient, yawing 

moment coefficient as CL, CD, Cm, CY, Cl and Cn respectively, and is given using 

Eqn. (6.6-6.11) considering entire flight envelop of AHV. Interpolation is 

performed by creating subroutines of the aerodynamic data and the aerodynamic 

coefficients are determined. Aerodynamic force represented with lift force is 

described with 𝐿 = 𝑞̄𝑆𝐶௅, drag force represented with 𝐷 = 𝑞̄𝑆𝐶஽ , side force 

expressed with 𝑌 = 𝑞̄𝑆𝐶௒, the rolling moment as 𝐿௔ = 𝑞̄𝑆𝑏𝐶௟, the pitching 

moment is expressed as 𝑀௔ = 𝑞̄𝑆𝑐𝐶௠, and yawing moment is given by 𝑁௔ =

𝑞̄𝑆𝑏𝐶௡. Here 𝑞̄, S, b, c is the dynamic pressure, reference area, span and mean 

aerodynamic chord respectively. The linear aerodynamic coefficient equations 

of the 6DOF dynamic simulation model of AHV is given by Eqn. (6.6-6.11). 

Here the control surfaces of AHV are given by e, a, and r as elevator, aileron, 

and rudder deflection. The elevon (left and right) relation to aileron and elevator 

deflection is developed using the relation as left_e=a+e and right_e=-a+e. The 

increment derivatives are given by the notation CL, and CL,δe for lift, and 

similarly expressed for drag, pitching moment, side force, rolling moment and 

yawing moment, and here V is AHV free stream velocity. 

6.3 AHV Model Simulation 

The linear AHV model developed in [16] is used for the 6DOF modelling and 

simulation, to obtain the transient response for the 𝑌 given by Eqn. (6.5). The 

linear aerodynamic model is used for the simulation. The thrust model with 

engine dynamics with ramjet/scramjet engine considering Eqn. (3.63) is used 
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for the simulation for Mach number, 𝑀 = 5 and ℎ = 65000 𝑓𝑡. The thrust 

engine model in [16] is used over broad variation of the flight envelopes. The 

proposed propulsion incorporates theoretical ramjet and scramjet engine. 

Considering 6DOF model, AHV engine dynamics using Eqn. (3.57) is 

implemented with Mach number, height and with PLA (pilot-lever-angle), and 

a function with selected flight envelop of M=5. Mach number with related 

altitude changes, need the use of an atmospheric model that includes 

temperature and density data. As the temperature and density of the air are 

affected by the height disparity, the relation is given by Eqn. (3.63) for height, 

h36089 ft (11000 m).  

The dynamic model for simulation using Eqn. (3.38-3.40) and Eqn. (3.32-3.37) 

are used to obtain the AHV model given by the states 

[𝑉, ℎ, 𝛼, 𝜃, 𝑞, 𝑇, 𝛽, 𝜙, 𝑝, 𝑟]் . Considering the nonlinear AHV model given by 

Eqn. (3.38-3.40) and Eqn. (3.32-3.37) are linearized using small disturbance 

theory in [99], and with steady and wing level flight and with no sideslip, is 

considered as reference condition with steady and perturbated state. The 

linearized model derived here with the longitudinal and lateral dynamics model 

are decoupled from each other. The linear model obtained here is considered for 

the case of level and straight flight at fixed velocity and altitude considering the 

bank angle as zero. The linear AHV model is expressed with the state space 

design approach in [100] and the model is represented by Eqn. (6.1-6.2), and 

here An is the normal acceleration of the AHV; pitch rate and angle of attack are 

given by q and . The states, input and output are given by Eqn. (6.3-6.5). 

The state variables given by Eqn. (6.3) are determined for the M=5 and the state 

space model matrices are obtained as A, B, C, and D. This model is obtained 

considering the level and straight AHV flight for considered velocity as M=5 

and height of 65000 ft (19812 m) considering the banking angle of zero. The 

model obtained is decoupled from the longitudinal and lateral system 

interactions. The linearized model A, B, C, and D is obtained for the AHV 

model considering trimmed for M=5 and height of 65000 ft (19812 m).     
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0 0 6.238 0.0312 0 0 0 0 0 0

0.0002 0 4.851 4.851 0 0 0 0 0 0

0 0 0.0002 0 0.001 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0

0 0 0.0125 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0.0001 0 0 0.001

0 0 0 0 0 0 0 0 0.001 0.0002
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
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


  

36.92 0.0029 0 0.0016

0 0 0 0

0.0003 0.0001 0 0

0 0 0 0

0 0.0018 0 0

0 0 0 0

0 0 0 0.0001

0 0 0 0

0 0 0.0056 0.0047

0 0 0 0.0021

 
 
 
 
 
 
 
 
 
 
 
 
  
  

B

 

0.0003 0.0524 12.48 0 0 0 0 0 0 0

0 0 0 0 1 0 0 0 0 0

0 0 57.3 0 0 0 0 0 0 0

  
   
  

C

 

0 0.0107 0 0.0107

0 0 0 0

0 0 0 0

  
   
  

D

 

6.3.1 Open Loop Simulation of AHV 

The open loop dynamic simulation is carried out for the output state space model 

given by Eqn. (6.5) and for the corresponding inputs from aileron and rudder 

deflections using Eqn. (6.4). Considering the linearized model of the AHV 

given by Eqn. (6.3-6.5), the 6DOF linear model simulation using [100] is carried 

out. From the Fig. 6.1-6.4 show the transient response of the AHV model given 

by Eqn. (6.1-6.2).  
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        (a) 

 

       (b) 

 

      (c) 

Fig. 6.1 Response for elevator deflection a 
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      (a) 

 

      (b) 

 

     (c) 

Fig. 6.2 Response for rudder deflection r 
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Fig. 6.3 Transient response for PLA 

 

Fig. 6.4 Transient response for PLA 

6.3.2 Open Loop Model Analysis 

Considering the linearized model of the AHV given by Eqn. (6.3-6.5), the model 

trim is obtained at Mach number, 𝑀 = 5 and at altitude ℎ = 65000, 𝑓𝑡 at level 

flight. The linearized AHV model is developed for linear time invariant control 

design applicability. The open loop dynamic analysis shows the stability 

concerns using Bounded Input Bounded Output (BIBO) condition in [117] for 

the simulated flight behaviour. For the a deflection, An shows unstable 

behaviour and,  and q remain stable for the considered flight condition as 

shown in Fig. 6.1. Similarly, for the r deflection, An, q and  results in the 

unstable behaviour of the AHV flight as shown in Fig. 6.2. Therefore, AHV 

flight for the considered state must be stabilised for the a and r deflection, 

using controller design and closed loop analysis for all outputs. The stability 
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analysis of the linear model is carried. In Fig. 6.5 the pole zero plot shows that 

the model has poles and zeros on the RHS plane and occurrence of non-

minimum phase, which results in the unstable of the system, this suggests 

designing a controller to make the stable behaviour of the AHV model at the 

flying flight condition. As a result of these nonminimum phases in [118]-[119], 

which render the system unstable, the AHV model flight circumstances for the 

anticipated level flight at M=5 Mach number are unstable. 

 

Fig. 6.5 Pole zero plot 

 

Fig. 6.6 Root locus plot of 𝐴௡ for 𝛿𝑎 deflection 
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Fig. 6.7 Root locus plot of 𝐴௡ for 𝛿𝑟 deflection 

 

Fig. 6.8 Root locus plot of 𝑞 for 𝛿𝑎 deflection 

 

Fig. 6.9 Root locus plot of 𝑞 for 𝛿𝑟 deflection 

For the AHV model represented by Eqn. (6.1-6.2), root locus is obtained 

corresponding to the different input and output. It is observed that for the 𝛿𝑎 
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deflection, 𝐴௡ results in unstable behaviour of the AHV at the corresponding 

flight condition as shown in Fig. 6.6. Similarly, for the 𝛿𝑟 deflection 𝐴௡, 𝑞 and 

𝛼 results in the unstable behaviour of the AHV flight is shown in Fig. 6.7, Fig. 

6.9 and Fig. 6.11. It is also observed that for the 𝛿𝑎 deflection, 𝛼 and 𝑞 remain 

stable for the given AHV flight and is shown in Fig. 6.6, Fig. 6.8 and Fig. 6.10. 

So, it becomes necessary for the unstable states, the controller design and closed 

loop analysis can be performed for the AHV flight to be stable for all the states 

and outputs. 

 

Fig. 6.10 Root locus plot of 𝛼 for 𝛿𝑎 deflection 

 

Fig. 6.11 Root locus plot of 𝛼 for 𝛿𝑟 deflection 

6.4 Closed Loop Control Design 

The controller design aspects for the AHVs from the control law design point 

of view using state feedback approach in [120] is presented here. There is a 
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strong correlation between the closed-loop stability of Linear Time Invariant 

(LTI) system and location of the system's poles. As a result, while designing a 

closed-loop system, the poles placed should have reasonable and anticipated 

performance. The pole-placement method uses state feedback or output 

feedback to locate the poles at the required location. Pole placement is critical 

in system design since system performance is directly related to pole 

placements. There are two primary steps that must be followed. The placement 

or assignment of poles is the initial stage, followed by the determination of 

feedback using gain values. The system's control is required and adequate for 

the state feedback-based strategy using closed-loop pole placement method. 

Controllability is a critical quality to test before we can use our state-space 

controller design methodologies in [121]-[122]. There must be a controllability 

attribute in order for us to influence the system's current state. The system's 

closed loop poles may be located anywhere on the s-plane. The controllability 

matrix given by Eqn. (6.12) must be satisfied for the system to be fully state 

controllable, 

   𝑷 = [𝑩 𝑨𝑩 𝑨ଶ𝑩 . . . 𝑨௡ିଵ𝑩]           (6.12) 

and should have rank n. The number of rows in a matrix determines its rank (or 

columns) and the system has n state variables, were n is state variables count. 

State-space method with state feedback technique offers more appropriate 

control design constraints considering movement with complete closed-loop 

pole autonomously to one another. A controller with full-state feedback creates 

the input vector u(t), and accordingly the control-law is designed with state-

space representation. Considering the control law design using state feedback 

method, the LTI system state model expressed with Eqn. (6.1-6.2), indicating 

open-loop dynamics representation needs controller design. For the state 

feedback based design control law using state model is expressed using Eqn. 

(6.13),  

   𝒖(𝑡) = −𝑲𝒙(𝑡) + 𝒓(𝑡)             (6.13) 

where the dimension of K is mn, and to accomplish required system attributes 

with feedback approach the state-run equations is expressed using Eqn. (6.14), 

   𝒙̇(𝑡) = (𝑨 − 𝑩𝑲)𝒙(𝑡) + 𝑩𝒓(𝑡)            (6.14) 
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and the block diagram depiction of Eqn. (6.14), is represented and given by Fig. 

6.12.  

 

Fig. 6.12 Model closed-loop state feedback control 

Transfer function from state space representation is presented and given by Eqn. 

(6.15), 

    𝑮 = 𝑪(𝑠𝑰 − 𝑨)ିଵ𝑩 + 𝑫            (6.15) 

with the characteristics polynomial for the system is expressed and provided 

using Eqn. (6.16). 

    |𝑠𝑰 − (𝑨 − 𝑩𝑲)| = 0           (6.16) 

Considering a symmetric set of n complex values given by (𝜇ଵ, 𝜇ଶ, . . . , 𝜇௡), 

indicating considered closed-loop eigenvalues of the system, hence desired 

closed-loop characteristics polynomial is given by Eqn. (6.17). 

𝛼(𝑠) = (𝑠 − 𝜇ଵ)(𝑠 − 𝜇ଶ). . . (𝑠 − 𝜇௡) 

       = 𝑠௡ + 𝛼௡ିଵ𝑠௡ିଵ+. . . +𝛼ଶ𝑠ଶ + 𝛼ଵ𝑠ଵ + 𝛼଴         (6.17) 

For determining the state feedback gain K, Ackermann’s formula is used and 

considering closed-loop characteristics polynomial (s), and the gain of the 

state-feedback is expressed using Eqn. (6.18), 

    𝑲 = [0 0 . . . 0 1]𝑷ିଵ𝜶(𝑨)           (6.18) 

where P gives controllability matrix and controllable pair (A, B) and (A) gives 

nn matrix given by Eqn. (6.19). 

𝛼(𝑨) = 𝑨௡ + 𝛼௡ିଵ𝑨௡ିଵ+. . . +𝛼ଶ𝑨ଶ + 𝛼ଵ𝑨ଵ + 𝛼଴𝑰          (6.19) 
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The state-feedback can be designed with the gain matrix for achieving desirable 

closed-loop eigenvalues and can be implemented as shown in Fig. 6.13, using 

state-space model demonstration with desired control. 

Linear state feedback control law design with pole placement is used in the 

control design for the AHV model and controller is implemented and is 

compared to those obtained with other controllers like proportional-integral (PI) 

controller and proportional-integral derivative (PID) in [123]. State realization 

using feedback version for the feedback-based controller design are realized 

using Eqn. (6.15) and is modelled using closed-loop state equation with pole 

positioning to achieve the required performance attributes.  

The control design is carried out using linear state feedback control law design 

using pole placement, and comparison with other controllers like PI, PD and 

PID is performed. The linear model given by Eqn. (6.1-6.2) represents the open 

loop system which are required for controller design. Using the feedback control 

law design using state feedback is given by Eqn. (6.13). The desired 

performance characteristics of the model for the closed loop state equation using 

pole placement is given by Eqn. (6.1-6.2) and Eqn. (6.20).  

 

Fig. 6.13 State model representation with desired control 

   𝐾 =
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⎤

           (6.20) 
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The gain value K for the AHV closed loop performance is determined using 

pole placement and is given by Eqn. (6.20). The control law design is 

implemented in MATLAB with the state feedback approach as shown in the 

Fig. 6.12. In MATLAB, the state feedback technique is used to implement the 

control law design as shown in Fig. 6.14. The aileron and rudder desired 

deflection is controlled using the controller for the AHV linear model using 

feedback design and corresponding deflection in terms of controller response is 

obtained. AHV model is simulated using MATLAB software for dynamic 

simulation. The dynamic response for AHV model is performed with different 

controller implementation using the block diagram as illustrated with Fig. 6.13 

and Fig. 6.14. 

 

Fig. 6.14 Feedback with controller design 

6.5 Closed Loop Simulation and Results 

The AHV 6DOF linear model is used for the control design considering state 

feedback development using pole placement. AHV model given by Eqn. (6.1-

6.5) is used for the open loop simulation, with the linear aerodynamic 

coefficients using Eqn. (3.41-3.52) and the propulsion engine model by Eqn. 

(3.57) is incorporated in the simulation, and the state feedback with pole 

placement using Eqn. (6.16) and Eqn. (6.20), is used for the dynamic stability 

implementation. The linear AHV state space model output given by Eqn. (6.5) 

is simulated for the control to be implemented for the corresponding input given 

by Eqn. (6.4). Closed loop simulation is performed for the output An, and a 

comparison for open and closed loop is shown in Fig. 6.15. The open-loop and 

closed-loop response analysis of AHV is shown in Fig. 6.15 and illustrates the 
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stability with closed loop design and hence shows convergence in the output 

generated via the use of the pole placement design and state feedback technique. 

The dynamic simulation of the AHV model is carried out using the MATLAB 

software. The 6DOF linear AHV model simulation is performed with the initial 

parameters and the system parameters in [64]. The open loop and closed-loop 

response analysis of AHV model are given by the Fig. 6.15, indicating the 

convergence of the output is obtained by the state feedback approach using the 

pole placement design. 

 

Fig. 6.15 Output response of Y for open and closed loop 

Fig. 6.16 represents the controller design implementation for output An, and for 

a deflection PI controller generates better response time due to less overshoot 

to PID and for r deflection PI controller gives better response and fast settling 

time in comparison to PID. 

 

(a) 
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(b) 

Figure 6.16. Response to controller design for output An for  

(a) a deflection and (b) r deflection 

Fig. 6.17 shows the controller design for output q, and for a deflection PID 

controller generates better response and faster settling time and for r deflection 

PID controller gives better response and fast settling time.  

 

(a) 

 

(b) 

Fig. 6.17. Response to controller design for output q for  

(a) a deflection and (b) r deflection 
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Fig. 6.18 shows the controller design for output , and for a deflection 

PID controller generates better and fast response with faster settling 

time, and for r deflection PID controller shows fast response with fast 

settling time. 

 

 

(a) 

 

(b) 

Fig. 6.18. Response to controller design for output  for  

(a) a deflection and (b) r deflection 

Validation of the results is shown using comparison of implemented controller 

with other AHV works carried out in the open literature is presented in Table 

6.1. The comparison of implemented controller with other AHV works carried 

out in the open literature is presented in Table 6.1 and shows that the controller 

design for the selected Mach number, M=5 provides better response in 

comparison to other designs.  
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Table 6.1 Comparison of Results with earlier works 

Work 

Responses for a deflection and r deflection, Stability of An, 
q,  is Stable 

Stability of  
An, q,  

tr ts Mp PI PID 

This work, M=5 Stable 1s 3s 6-9% Slow Fast 
[124] Stable Fast Fast 6-7% Combined 

[125], M=7 Stable 0.02s 3s 5-7% - 
PID+ 
PSO 

[126], M=4 to 7 Stable - 3.36s 43.4% - PID 
[127] Stable 4s 9s 9.4% - PID 

 

The PID design presented here finds better control design in comparison to 

[124], [125]. The control design presented for the system matrices A, B, C, and 

D from Eqn. (6.3-6.5) finds difficulty as controller order is of higher order and 

it’s difficult to reduce and then design the control law. 

6.6 Chapter Summary 

The AHV 6DOF dynamic linear model is used for the analysis and control 

design for this study. The model uses linear aerodynamic model with ramjet and 

scramjet engine for the propulsion model. The linear model developed is 

considered for the steady and wing level flight condition operating at level and 

straight flight condition for considered velocity M=5 and altitude of 65000 ft 

(19812 m). The linear model is developed as state space model with states as x, 

with inputs given by u as a and r and the output y given as An, q and . as the 

normal acceleration, pitch rate and angle of attack of AHV. The model obtained 

is decoupled from the longitudinal and lateral system interactions and state 

space system matrices A, B, C, and D is obtained for the AHV model using 

mathematically modelling. 

This linear model is analysed for the open loop dynamic simulation for the state 

space developed model of the AHV for the different inputs a and r deflection. 

The pole-zero plot of the model shows nonminimum phase for the poles and 

zeros, which results in system unstability. Hence, control design is implemented 

using state feedback architecture for the AHV dynamic model. The dynamic 

stability of the model is investigated, and state feedback control using pole 
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placement is implemented to attain the stability of the model. The open-loop 

and closed-loop response analysis of AHV shows the stability with closed loop 

design and convergence is seen using the pole placement design and state 

feedback technique. The state feedback technique is implemented in MATLAB 

for the control law design using control system design tool. The aileron and 

rudder desired deflection is controlled using the controller for the linear model 

using feedback design. The dynamic response for AHV model is obtained for 

different controller implementation for the output An, q and . For the output’s 

PI and PID controller is designed and is compared for better responses for the 

a deflection and r deflection. The PI controller gives better response and fast 

settling time in comparison to PID for An. And PID controller generates better 

response and faster settling time for r deflection for q. And PID controller 

design for output , generates better and fast response with faster settling time, 

and shows better response with fast settling time for r and a deflection 

respectively in comparison to the other designs. 

The dynamic AHV model analysed for the level flight M=5 Mach number for 

the a and r deflection shows unstable behaviour for the An, α and q with the 

considered flight condition. The pole-zero location show occurrence of 

nonminimum phase for the considered flight state leading to unstable dynamics, 

resulting in control design. Repsonses to controller design for the a and r 

deflection shows that PID gives better response and faster settling time for the 

considered flight condition at M=5 Mach number and in comparison to other 

designed controllers. 
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CHAPTER 7 

CONCLUSION AND FUTURE RESEARCH 

This chapter presents the conclusion of this research work and presents the 

future scope of this research for the Air-Breathing Hypersonic Vehicle. 

7.1 Introduction 

The hypersonic technology development of the different vehicles from the 

1930’s to till date, shows that vehicles like X-15, X-20, X-30 have created a 

benchmark for the upcoming vehicle design and developments. From the 1990s 

the pace of hypersonic vehicle development increased, and it resulted in new 

research and different initiatives like Hyper-X, X-51, HTV-3X, SKYLON and 

HIFiRE. Literature shows that dynamic models like Winged cone, Road Runner 

and X-43A, are completely established models available to public for research 

and these models can be used in the investigation of flight dynamics and control 

systems. Other programs are in progress stage and can provide a prospective for 

the control design. The key technologies under development for the hypersonic 

flight like the aerodynamics, propulsion systems, scramjets, hybrid propulsion 

systems, materials, airframe integrated system design and others need a 

breakthrough over the coming decades to achieve the new developments for the 

AHVs. 

The crucial technology in AHVs is model development with design constraints 

for the control law and control system design for the AHVs, is facing adequately 

number of challenges, and substantial remains a concern in achieving AHVs 

flight realistic. The controller design for the AHVs shows that, advanced control 

methods can be used to adapt the dynamic changes in the real time application. 

Advanced control design methods and adaptive control methods can be used for 

designing the controller for the nonlinear flight dynamics, and intelligent control 

techniques can be designed to provide a robust flight control using optimization 

techniques, and guaranteed stability of the system. Bifurcation Method 
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approach is used for the stability analysis of the non-linear AHV dynamic 

models with wide flight regimes ranging from Mach 0 to 25. Non-linear 

behaviour and topological behaviour are analysed using Bifurcation Method for 

the dynamic models, and it shows all critical points and where equilibrium 

results in change in the stability of the AHV. 

7.2 Summary of Research Findings 

The topological behaviour of the generic AHV model provides the quantitative 

assessment of the equilibrium states for the entire wide flight regimes of the 

dynamic AHV model with high altitude and Mach number. The static, dynamic 

and global stability study of AHV model using Bifurcation Analysis is 

presented. And the flight dynamics and stability analysis for the generic AHV 

model using 3-DOF dynamic simulation model is presented with the Bifurcation 

Method. The analysis shows that the Bifurcation Method is a powerful tool to 

analyse the stability regions with the different equilibrium point of the chosen 

parameters. 

The research presents the nonlinear modeling, simulation and aerodynamic 

model development with dynamic 3-DOF longitudinal AHV model. Dynamic 

simulation is carried out with zero elevator deflection. The nonlinear aero data 

model is developed for 𝐶௅, 𝐶஽ and 𝐶௠ with the entire flight regime of hypersonic 

flight to Mach number 𝑀, from 𝑀 = 0.9 𝑡𝑜 24. The dynamic stability 

investigation with selected 𝑀 = 0.9, 4, 6 and 24, is presented considering the 

bifurcation analysis. This study provides eigen values, based on which the 

stability analysis is provided. It is seen that at the Mach number, 𝑀 = 0.9 𝑎𝑛𝑑 6 

shows short period mode and 𝑀 = 4 𝑎𝑛𝑑 24, shows the long period mode 

presence. Results presented here with the bifurcation analysis shows a 

promising method for stability analysis for various trim points under 

consideration.  

Bifurcation analysis of Longitudinal dynamics for Generic AHV model 

considering CBA has been implemented for AHV dynamics at Mach Number, 

M=0.9, for different choices of elevator deflection and with the aim to observe 

the control effects. Bifurcation technique is implemented with the 3DOF 

longitudinal AHV model using the AUTO-07p platform for the different 
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elevator deflection, 𝛿𝑒= -120 and 120. The Bifurcation Diagram obtained for 

the data points with different forward and backward runs with the different 

iterations, shows the parameter values of 𝛼, θ and 𝑞. The forward and backward 

run shows the presence of Hopf function at PT 1 with iteration 1, and Fold, BP 

and Hopf function at PT 121, 200 and iteration 5, 3; with the eigen values with 

each iteration. The stability information is determined with the corresponding 

iteration of the eigen values, showing the dynamic stability information. The 

eigen values determined indicate the short period mode behaviour of the AHV 

indicating the stable behaviour at the Mach Number. The Method shows the 

AHV’s dynamically stability determined at M=0.9 is stable. This shows that for 

the different Mach Number of the AHV’s flight, Bifurcation is promising 

method to determine the dynamical stability of the vehicle for flight range 

between M=0 to 24. The research outlines Bifurcation Methodology application 

implementation to study the different stability behaviour for Generic AHV. 

This study details the dynamic modelling and simulation of a 3 degree-of-

freedom (3DOF) longitudinal AHV model, as well as the construction of a 

bifurcation approach for assessing the model's stability. Different aerodynamic 

model analyses of incremental pitching coefficient at different Mach numbers 

are used in a simulation-based 3DOF AHV trim analysis. Trim simulation is 

carried out using the AHV model, with stable results achieved for Cases 1, 3, 

and 4 at Mach numbers M=0.9, M=6, and M=10, and unstable results achieved 

for Cases 2, 5, and 6 at Mach numbers M=4, M=15, and M=24. The 3DOF AHV 

model is used to implement the bifurcation approach for case validation. The 

eigen values and poles are calculated using the bifurcation method for each 

scenario, confirming that scenarios 1, 3, and 4 are stable whereas scenarios 2, 

5, and 6 are unstable. The longitudinal modes of the AHV shows that cases 1 

and 4 shows short period behaviour and case 3 shows long period or phugoid 

behaviour. The given bifurcation analysis results show a possible method for 

identifying stable trim points.  

This research presents the linear control design for the linear 6DOF dynamic 

model for the AHV with decoupled dynamics. State feedback control via pole 

placement is introduced, and the dynamic stability of the model is analyzed with 

the help of the root locus method. The closed loop stability analysis provides 
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suitable linear control design with PI, PD and PID, and their response suggests 

PI as valid controller design for the AHV flight at Mach number, 𝑀 = 5. 

7.3 Contributions of this Research  

The research presents the historical developments of AHV during the last six 

decades to present, followed by the dynamic models used from 1990’s to present 

for the model development, simulation and control design, and then presents the 

literature review of the controller design for the AHV’s highlighting the 

different control techniques with the controller issues, and finally highlights the 

ongoing AHV developments and their future work progress from different 

nations. The research shows that, the hypersonic vehicles like X-15, X-20, X-

30 have created a benchmark and foundation for the next generation vehicle 

design for the initiatives like Hyper-X, X-51, HTV-3X, SKYLON and HIFiRE. 

Dynamic models of AHV’s like Winged cone, Road Runner and X-43A, are 

completely established models available to public for research and these models 

could be employed in investigation of AHV dynamics and control design. 

Control design for the AHVs shows that, advanced control methods can be 

implemented considering the dynamic changes in the real time application with 

intelligent adaptive control method and to provide a robust flight control using 

optimization techniques, to achieve guaranteed stability of the AHV’s 

hypersonic flight.  

The AHV (Air-breathing Hypersonic Vehicle) offers an appealing concept for 

routine, low-cost access to space. For low-cost transport and tourism on Earth 

as well as in the near future in space, it finds extensive use in both civilian and 

military applications. In recent years, the benefits and potential of Hypersonic 

has got international attention, resulting in an expansion of Hypersonic 

Technology on a global scale with prospective military and civilian 

applications. The use of AHVs can provide long-distance travelling at cruising 

speed and cheap cost in Low Earth Orbit. As NASA's Program has progressed 

over the years, the need for good quality at a reasonable cost to enter space has 

reawakened interest in Hypersonic Vehicles (HVs). SSTO (Single Stage To 

Orbit) flights using AHV technology can be used for a variety of military and 

commercial purposes, with tremendous potential for space tourism. This 
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research provides a way forward to achieve and a small contribution to the Air-

breathing Hypersonic Vehicle research programs to accomplish the dreams of 

human to reach in space. 

The impending applications of AHV technology to SSTO flights in achieving 

LEO with cost effective Space missions, military missions and commercial 

usage, will open new gateways for immense prospects with space tourism in 

coming decades. 

7.4 Limitations and Future Research 

The developments in Hypersonic Technology, a safe, affordable, and efficient 

hypersonic travel to Space is now within reach. The analysis of the AHV's 

nonlinear dynamical model using the Bifurcation Method is presented here. It 

demonstrates how the Bifurcation Method may be applied to the study of 

nonlinear dynamics and stability for three degrees of freedom along the 

longitudinal axis of a generic hypersonic vehicle. The dynamic stability study 

for Mach Number, M=0.9, and the equilibrium states throughout the entire 

broad flight envelope are presented in the Bifurcation study of AHV. Here, we 

use the AUTO-07p software platform to show how the Bifurcation Technique 

and Continuation method may be used to analyse the dynamics and control of 

an AHV in flight. For the AHV dynamic model, AUTO-07p is used to 

implement the Bifurcation Methodology throughout a range of flight situations 

involving elevator deflection, 𝛿𝑒. For the different Mach Number of the AHV’s 

flight, Bifurcation is promising method to determine the dynamical stability of 

the vehicle for the Mach number ranging from M=0 to 24, and post stall analysis 

can be carried out for the different angle of attack as future work using the 

Bifurcation Method. 

The development over the half of the century to achieve hypersonic atmospheric 

flight and access to space in the coming decade can lead to the operational 

hypersonic aircraft. The key developments and research over the years of the 

hypersonic vehicles X-15, X-43A, HyFly, X-51 and many others have resulted 

the key technologies and several approaches that have laid the foundation for 

the development platform for the Falcon HTV-3X as a fully integrated system. 
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The development for the AHV technology over the last six decades and the 

future roadmap [128] outlined in the Fig. 7.1 shows the combined building 

block approach from the scramjet flight, ground propulsion, combined cycle 

flight and airframe testbeds to full scale development capability. The supporting 

component research and technology of different testbeds and demonstration can 

lead to the full-scale development of the AHV in the coming decades and hence 

easy access to space can be achieved with the advance safety measures. 

 

Fig. 7.1 Roadmap of building block approach of AHV access to space [128] 

Achieving hypersonic flight in near future will be complex and challenging, and 

influence of political sides will play an important role in its success. The coming 

decades will prove and outcast the research and development of AHVs with the 

involvement of the private players into the field and high interest of the Nations 

to achieve the Hypersonic Technology. 
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APPENDIX A 

AHV Aerodynamic Model Data Generation 

The aerodynamic coefficients of the AHV is generated using the aerodynamic 

equations given by [13] using MATLAB and are given below and are used in 

the AHV modeling and simulation. 

Table A.1  

𝜶 -1 1 4 10 
M 𝑪𝑳,𝜶 𝑪𝑳,𝜶 𝑪𝑳,𝜶 𝑪𝑳,𝜶 
0.3 -0.018297169 0.0166991 0.06762333 0.207304831 
0.7 -0.020004771 0.019808539 0.078826588 0.237821465 
0.9 -0.020009696 0.022212133 0.08553757 0.255647812 
1.5 -0.038046197 0.03303119 0.080517511 0.20236353 
2.5 -0.043225858 0.022926329 0.059178313 0.149064336 
4 -0.04412589 0.014638497 0.039302282 0.1041236 
6 -0.014222008 0.017310178 0.062810272 0.147721312 

10 -0.022666584 0.005081602 0.045480736 0.12226 
15 -0.014376709 0.008641477 0.043068736 0.1119475 
20 -0.004556884 0.013731302 0.042635936 0.10613 
24 0.004940828 0.019445014 0.044255008 0.105252688 

 

Table A.2 

𝜶 -1 1 4 10 
M 𝑪𝑫,𝜶 𝑪𝑫,𝜶 𝑪𝑫,𝜶 𝑪𝑫,𝜶 
0.3 0.010948266 0.011163619 0.012444198 0.04415793 
0.7 0.020227468 0.02095402 0.02581343 0.05923374 
0.9 0.043923569 0.044730889 0.04991365 0.09284453 
1.5 0.048491413 0.044637912 0.050920647 0.08554807 
2.5 0.041371981 0.037512305 0.042159237 0.06600876 
4 0.026863349 0.022842588 0.026393963 0.04275877 
6 0.002346163 0.007841117 0.012093798 0.03767423 

10 0.001256723 0.005751677 0.008639238 0.031975 
15 0.002413348 0.005658302 0.006934301 0.02799531 
20 0.004498873 0.006493827 0.006263638 0.02564 
24 0.005059249 0.006054203 0.004694934 0.02314845 
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Table A.3 

𝜶 -1 1 4 10 
M 𝑪𝒎,𝜶 𝑪𝒎,𝜶 𝑪𝒎,𝜶 𝑪𝒎,𝜶 
0.3 0.000303381 -0.005047015 -0.01681 -0.05767 
0.7 0.00052382 -0.008384308 -0.0266 -0.05357 
0.9 9.86E-05 -0.010894128 -0.03113 -0.05762 
1.5 0.005692055 -0.010146226 -0.02089 -0.04545 
2.5 0.005857435 -0.002145266 -0.00607 -0.01374 
4 -0.002869432 -0.000986622 0.000279 0.004722 
6 0.002746997 0.000238299 -0.00266 -0.00928 

10 0.003574237 0.002511939 0.001507 -0.00232 
15 0.001070549 0.001816252 0.002984 0.001558 
20 -0.001118163 0.001435539 0.004559 0.004324 
24 -0.002592747 0.001407355 0.00594 0.005787 

 

Table A.4 

𝜶 -5 -1 4 10 
M 𝑪𝒎,𝒒 𝑪𝒎,𝒒 𝑪𝒎,𝒒 𝑪𝒎,𝒒 
0.3 -1.12505 -1.12505 -1.12505 -1.12505 
0.7 -1.25005 -1.25005 -1.25005 -1.25005 
0.9 -1.31255 -1.31255 -1.31255 -1.31255 
1.5 -0.44481174 -0.79390233 -0.79852 -0.79826 
2.5 -0.28299252 -0.60039559 -0.59342 -0.60115 
4 -0.25868612 -0.48087063 -0.48735 -0.615 
6 0.02869321 -0.32726331 -0.34397 -0.46735 

10 0.10335625 -0.24736507 -0.26315 -0.39365 
15 0.12004375 -0.22202757 -0.23797 -0.38474 
20 0.08273125 -0.24835007 -0.26591 -0.43715 
24 0.02055829 -0.30004623 -0.31995 -0.51666 

 

Table A.5 𝐶௅,ఋ௘  for 𝛼 = −1 

𝜹𝒆 -20 -10 0 10 20 
M 𝑪𝑳,𝜹𝒆 𝑪𝑳,𝜹𝒆 𝑪𝑳,𝜹𝒆 𝑪𝑳,𝜹𝒆 𝑪𝑳,𝜹𝒆 
0.3 0.0590744 0.0290498 -0.002311 -0.0331131 -0.055049 
0.7 0.06582282 0.0321325 -0.002979 -0.0376041 -0.063426 
0.9 0.06909906 0.0336187 -0.003355 -0.039902 -0.067691 
1.5 0.03998671 0.0173909 -0.003607 0.01948981 0.038657 
2.5 0.01973249 0.0034184 -0.016478 0.00253716 0.0124391 
4 0.0085639 0.0089535 -0.006862 0.00360073 -0.007686 
6 0.0070419 0.0034704 -0.000101 -0.0036726 -0.007244 
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10 0.0063403 0.0031244 -9.15E-05 -0.0033074 -0.006523 
15 0.0054633 0.0026919 -7.95E-05 -0.0028509 -0.005622 
20 0.0045863 0.0022594 -6.75E-05 -0.0023944 -0.004721 
24 0.0038847 0.0019134 -5.79E-05 -0.0020292 -0.004001 

 

Table A.6 𝐶௅,ఋ௘  for 𝛼 = −4 

𝜹𝒆 -20 -10 0 10 20 
M 𝑪𝑳,𝜹𝒆 𝑪𝑳,𝜹𝒆 𝑪𝑳,𝜹𝒆 𝑪𝑳,𝜹𝒆 𝑪𝑳,𝜹𝒆 
0.3 0.07420601 0.0379849 0.0007722 -0.035595 -0.062875 
0.7 0.08150173 0.0413282 0.001556 -0.0365133 -0.065403 
0.9 0.08562174 0.0428057 0.0015528 -0.0373303 -0.067273 
1.5 0.04746074 0.0230857 0.0006949 0.02280146 0.0414245 
2.5 0.02396952 0.0078545 -0.012567 0.00523732 0.0134711 
4 0.00575197 0.010609 -0.003904 0.00457715 -0.010861 
6 0.0081409 0.0043429 0.0005449 -0.0032531 -0.007051 

10 0.0076013 0.0041249 0.0006485 -0.0028279 -0.006304 
15 0.0069268 0.0038524 0.000778 -0.0022964 -0.005371 
20 0.0062523 0.0035799 0.0009075 -0.0017649 -0.004437 
24 0.0057127 0.0033619 0.0010111 -0.0013397 -0.003691 

 

Table A.7 𝐶௅,ఋ௘ for 𝛼 = 10 

𝜹𝒆 -20 -10 0 10 20 
M 𝑪𝑳,𝜹𝒆 𝑪𝑳,𝜹𝒆 𝑪𝑳,𝜹𝒆 𝑪𝑳,𝜹𝒆 𝑪𝑳,𝜹𝒆 
0.3 0.08941146 0.0431799 -0.00181 -0.0443692 -0.07721 
0.7 0.10060761 0.0447903 -0.004452 -0.0458184 -0.08087 
0.9 0.09557987 0.0445565 -0.008142 -0.0493487 -0.084835 
1.5 0.06343123 0.034115 0.0091963 0.03110144 0.0526985 
2.5 0.02746606 0.0132619 -0.006253 0.00913354 0.0165205 
4 -0.00141554 0.0034666 -0.00292 -0.0013506 -0.014575 
6 0.0094597 0.0053899 0.0013201 -0.0027497 -0.00682 

10 0.0091145 0.0053255 0.0015365 -0.0022525 -0.006042 
15 0.008683 0.005245 0.001807 -0.001631 -0.005069 
20 0.0082515 0.0051645 0.0020775 -0.0010095 -0.004097 
24 0.0079063 0.0051001 0.0022939 -0.0005123 -0.003319 

 

Table A.8 𝐶௠,ఋ௘  for 𝛼 = −1 

𝜹𝒆 -20 -10 0 10 20 
M 𝑪𝒎,𝜹𝒆 𝑪𝒎,𝜹𝒆 𝑪𝒎,𝜹𝒆 𝑪𝒎,𝜹𝒆 𝑪𝒎,𝜹𝒆 
0.3 -0.03297319 -0.016425 0.00067743 0.01749009 0.03305639 
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0.7 -0.03855385 -0.0194971 0.00029355 0.01997042 0.03857338 
0.9 -0.04130971 -0.0210809 2.70E-05 0.02116193 0.0413595 
1.5 -0.00549776 -0.0027421 1.3625E-05 0.00276932 0.00552501 
2.5 -0.00537547 -0.0026794 1.6575E-05 0.0027126 0.00540862 
4 -0.00519202 -0.0025855 0.000021 0.00262751 0.00523402 
6 -0.00494744 -0.0024603 0.0000269 0.00251407 0.00500124 

10 -0.00445826 -0.0022098 0.0000387 0.00228718 0.00453566 
15 -0.00384679 -0.0018967 0.00005345 0.00200357 0.00395369 
20 -0.00323532 -0.0015836 0.0000682 0.00171996 0.00337172 
24 -0.00274614 -0.0013331 0.00008 0.00149307 0.00290614 

 

Table A.9 𝐶௠,ఋ௘  for 𝛼 = 4 

𝜹𝒆 -20 -10 0 10 20 
M 𝑪𝒎,𝜹𝒆 𝑪𝒎,𝜹𝒆 𝑪𝒎,𝜹𝒆 𝑪𝒎,𝜹𝒆 𝑪𝒎,𝜹𝒆 
0.3 -0.03812239 -0.0196516 -0.0006729 0.01798912 0.0353978 
0.7 -0.04254847 -0.021706 -0.0004956 0.02045564 0.04042703 
0.9 -0.04499088 -0.0228588 -0.0005159 0.0216154 0.04305194 
1.5 -0.00632329 -0.0033363 -0.0003493 0.00263766 0.00562464 
2.5 -0.00623302 -0.0033008 -0.0003687 0.0025635 0.00549567 
4 -0.0060976 -0.0032477 -0.0003977 0.00245225 0.0053022 
6 -0.00591706 -0.0031767 -0.0004364 0.00230393 0.00504426 

10 -0.00555596 -0.0030349 -0.0005138 0.00200728 0.00452836 
15 -0.00510459 -0.0028576 -0.0006106 0.00163647 0.00388349 
20 -0.00465322 -0.0026803 -0.0007073 0.00126566 0.00323862 
24 -0.00429212 -0.0025384 -0.0007847 0.00096901 0.00272272 

 

Table A.10 𝐶௠,ఋ௘  for 𝛼 = 10 

𝜹𝒆 -20 -10 0 10 20 
M 𝑪𝒎,𝜹𝒆 𝑪𝒎,𝜹𝒆 𝑪𝒎,𝜹𝒆 𝑪𝒎,𝜹𝒆 𝑪𝒎,𝜹𝒆 
0.3 -0.04248405 -0.0212691 6.26E-05 0.02092828 0.04065812 
0.7 -0.04833456 -0.0232817 0.00040908 0.02307777 0.04569537 
0.9 -0.04970235 -0.0249178 0.00028081 0.0240719 0.04655268 
1.5 -0.00731393 -0.0040494 -0.0007849 0.00247967 0.0057442 
2.5 -0.00726208 -0.0040465 -0.000831 0.00238458 0.00560013 
4 -0.0071843 -0.0040422 -0.0009001 0.00224194 0.00538402 
6 -0.0070806 -0.0040365 -0.0009924 0.00205176 0.00509588 

10 -0.0068732 -0.004025 -0.0011768 0.0016714 0.0045196 
15 -0.00661395 -0.0040107 -0.0014074 0.00119595 0.00379925 
20 -0.0063547 -0.0039963 -0.0016379 0.0007205 0.0030789 
24 -0.0061473 -0.0039848 -0.0018223 0.00034014 0.00250262 
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Table A.11 𝐶஽,ఋ௘  for 𝛼 = −1 

𝜹𝒆 -20 -10 0 10 20 
M 𝑪𝑫,𝜹𝒆 𝑪𝑫,𝜹𝒆 𝑪𝑫,𝜹𝒆 𝑪𝑫,𝜹𝒆 𝑪𝑫,𝜹𝒆 
0.3   -0.00118 -0.0023598 0.0104032 
0.7   -4.75E-05 -0.0024261 0.0077493 
0.9   0.0006952 -0.0024911 0.0057655 
1.5   -2.13E-05 0.00148197 0.0057776 
2.5   -3.49E-05 0.00128493 0.00513 
4   -0.000156 0.00076381 0.0035574 
6   -0.000144 0.00021957 0.0019761 

10   -0.000409 -2.38E-05 0.001754 
15   -0.000604 -0.0001923 0.0016121 
20   -0.000648 -0.0002101 0.0016209 
24   -0.000575 -0.0001158 0.0017365 

 

Table A.12 𝐶஽,ఋ௘  for 𝛼 = 4 

𝜹𝒆 -20 -10 0 10 20 
M 𝑪𝑫,𝜹𝒆 𝑪𝑫,𝜹𝒆 𝑪𝑫,𝜹𝒆 𝑪𝑫,𝜹𝒆 𝑪𝑫,𝜹𝒆 
0.3   0.0010107 -0.0019039 0.0102063 
0.7   0.0005091 -0.0070183 -0.001709 
0.9   0.0007606 -0.0093959 -0.008556 
1.5   7.63E-05 0.00010796 0.0029132 
2.5   0.0001093 0.00023391 0.0029023 
4   3.16E-05 0.0001882 0.0023193 
6   3.10E-05 0.00023597 0.0018338 

10   -0.000234 -0.0001132 0.0014005 
15   -0.000429 -0.0004138 0.000995 
20   -0.000473 -0.0005636 0.000741 
24   -0.0004 -0.0005748 0.0006467 

 

Table A.13 𝐶஽,ఋ௘ for 𝛼 = 10 

𝜹𝒆 -20 -10 0 10 20 
M 𝑪𝑫,𝜹𝒆 𝑪𝑫,𝜹𝒆 𝑪𝑫,𝜹𝒆 𝑪𝑫,𝜹𝒆 𝑪𝑫,𝜹𝒆 
0.3   -0.001413 -0.0040304 0.0143224 
0.7   0.0009027 -0.0122136 -0.013909 
0.9   0.0043875 -0.0152103 -0.034563 
1.5   0.0001897 -0.001586 -0.000708 
2.5   0.0001522 -0.001117 0.0001906 
4   -0.000182 -0.0007217 0.0009846 
6   0.0004538 0.00046859 0.0018775 
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10   0.0001893 -6.67E-06 0.0011942 
15   -5.79E-06 -0.0004642 0.0004795 
20   -5.01E-05 -0.0007699 -8.03E-05 
24   2.29E-05 -0.0009052 -0.000417 

 

Table A.14  

𝜶 -1 4 10 
M 𝑪𝒀,𝜷 𝑪𝒀,𝜷 𝑪𝒀,𝜷 
0.3 -0.49 -0.49 -0.49 
0.7 -0.51 -0.51 -0.51 
0.9 -0.52 -0.52 -0.52 
1.5 -0.497509598 -0.510225353 -0.510178163 
2.5 -0.454304835 -0.457897936 -0.461856258 
4 -0.69995643 -0.700432091 -0.759052243 
6 -0.530000244 -0.528688293 -0.580557915 

10 -0.420624142 -0.421551473 -0.4696026 
15 -0.367970755 -0.370691563 -0.4096081 
20 -0.352333323 -0.357981784 -0.3877646 
24 -0.337413659 -0.348414111 -0.375612075 

 

Table A.15  

𝜶 -1 4 10 
M 𝑪𝒍,𝜷 𝑪𝒍,𝜷 𝑪𝒍,𝜷 
0.3 -0.09755 -0.09755 -0.09755 
0.7 -0.10255 -0.10255 -0.10255 
0.9 -0.10505 -0.10505 -0.10505 
1.5 -0.122263742 -0.121908721 -0.122064535 
2.5 -0.119564261 -0.120155868 -0.119895892 
4 -0.054431274 -0.057944506 -0.062547784 
6 -0.036382048 -0.039889496 -0.043967875 

10 -0.02162665 -0.0249722 -0.0289004 
15 -0.016208154 -0.019358379 -0.023138319 
20 -0.013326742 -0.016289472 -0.019965 
24 -0.012398801 -0.015217172 -0.018840741 

 

Table A.16  

𝜶 -1 4 10 
M 𝑪𝒏,𝜷 𝑪𝒏,𝜷 𝑪𝒏,𝜷 
0.3 0.12495 0.12495 0.12495 
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0.7 0.14995 0.14995 0.14995 
0.9 0.16245 0.16245 0.16245 
1.5 0.186162934 0.184874633 0.184226077 
2.5 0.119786938 0.120837827 0.118576656 
4 0.14881386 0.149843409 0.127697128 
6 0.039243466 0.039424406 0.028913214 

10 -0.02835737 -0.02946127 -0.03902097 
15 -0.06059489 -0.06285485 -0.06952738 
20 -0.07130017 -0.07413045 -0.07831064 
24 -0.08055409 -0.0834256 -0.08666 

 

Table A.17 

𝜶 -1 4 10 
M 𝑪𝒍,𝒑 𝑪𝒍,𝒑 𝑪𝒍,𝒑 
0.3 -0.1375 -0.1375 -0.1375 
0.7 -0.1425 -0.1425 -0.1425 
0.9 -0.145 -0.145 -0.145 
1.5 -0.1499914 -0.14998252 -0.14991435 
2.5 -0.13751894 -0.13746269 -0.13742725 
4 -0.11505553 -0.11718957 -0.13027708 
6 -0.07821943 -0.07864883 -0.09761488 

10 -0.04967828 -0.0520096 -0.0739 
15 -0.03825828 -0.0430696 -0.06919 
20 -0.03284588 -0.0402512 -0.07124 
24 -0.03046255 -0.04002515 -0.07536832 

 

Table A.18  

 𝜶 -1 4 10 
M 𝑪𝒏,𝒑 𝑪𝒏,𝒑 𝑪𝒏,𝒑 
0.3 0.185 0.185 0.185 
0.7 0.193 0.193 0.193 
0.9 0.197 0.197 0.197 
1.5 0.174999575 0.174999575 0.174999575 
2.5 0.164999375 0.164999375 0.164999375 
4 0.1299992 0.1299992 0.1299992 
6 0.08393888 0.08393888 0.08393888 

10 0.049 0.049 0.049 
15 0.0306875 0.0306875 0.0306875 
20 0.018 0.018 0.018 
24 0.01108352 0.01108352 0.01108352 
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Table A.19  

𝜶 -1 4 10 
M 𝑪𝒍,𝒓 𝑪𝒍,𝒓 𝑪𝒍,𝒓 
0.3 0.27 0.27 0.27 
0.7 0.28 0.28 0.28 
0.9 2.85E-01 0.285 0.285 
1.5 0.250531966 0.25946533 0.269513675 
2.5 0.191285726 0.199814283 0.209388715 
4 0.131718317 0.139642191 0.148519896 
6 0.088618503 0.095740847 0.103715984 

10 0.058770033 0.064305481 0.070566 
15 0.04827377 0.051855906 0.056142875 
20 0.058498503 0.060161001 0.062663 
24 0.070755861 0.070906895 0.072116696 

 

Table A.20  

𝜶 -1 4 10 
M 𝑪𝒏,𝒓 𝑪𝒏,𝒓 𝑪𝒏,𝒓 
0.3 -1.31995 -1.31995 -1.31995 
0.7 -1.37495 -1.37495 -1.37495 
0.9 -1.40245 -1.40245 -1.40245 
1.5 -1.44893934 -1.44893029 -1.44749232 
2.5 -1.20008234 -1.19823884 -1.19806549 
4 -0.95040632 -0.95622604 -1.01651342 
6 -0.68597321 -0.69337297 -0.73412612 

10 -0.49178235 -0.4950648 -0.531153 
15 -0.42358551 -0.4217654 -0.45226925 
20 -0.41789194 -0.41101824 -0.436212 
24 -0.45442839 -0.44354709 -0.46469024 

 

Table A.21 𝐶௟,ఋ௔ for 𝛼 = −1 

𝜹𝒆 -20 -10 0 10 20 
M 𝑪𝒍,𝜹𝒂 𝑪𝒍,𝜹𝒂 𝑪𝒍,𝜹𝒂 𝑪𝒍,𝜹𝒂 𝑪𝒍,𝜹𝒂 
0.3 -0.01362102 -0.006011 0.0006703 0.00790596 0.0144517 
0.7 -0.01507192 -0.006905 0.0004978 0.00861932 0.0162126 
0.9 -0.01574555 -0.007376 0.000363 0.00895175 0.0171407 
1.5 -0.00239636 -0.000879 0.0004068 0.00146042 0.002282 
2.5 -0.00242621 -0.000909 0.0003765 0.00142978 0.002251 
4 -0.00246577 -0.000949 0.0003363 0.0013891 0.0022098 
6 -0.00250876 -0.000992 0.0002926 0.00134471 0.0021645 
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10 -0.00256133 -0.001045 0.0002389 0.00128968 0.0021075 
15 -0.00256438 -0.001047 0.0002354 0.00128418 0.0020989 
20 -0.00249781 -0.00098 0.0003024 0.001349 0.0021598 
24 -0.00239443 -0.000875 0.0004069 0.00145148 0.0022588 

 

Table A.22 𝐶௟,ఋ௔ for 𝛼 = 4 

𝜹𝒆 -20 -10 0 10 20 
M 𝑪𝒍,𝜹𝒂 𝑪𝒍,𝜹𝒂 𝑪𝒍,𝜹𝒂 𝑪𝒍,𝜹𝒂 𝑪𝒍,𝜹𝒂 
0.3 -0.01856455 -0.009041 -0.000579 0.00831497 0.01641 
0.7 -0.01988219 -0.009736 -0.000668 0.00893449 0.0179707 
0.9 -0.02060926 -0.010122 -0.000751 0.00923646 0.0188856 
1.5 -0.00280538 -0.001285 2.64E-06 0.00105815 0.0018813 
2.5 -0.00283914 -0.001317 -2.77E-05 0.00102864 0.001852 
4 -0.0028856 -0.00136 -6.79E-05 0.00098938 0.0018123 
6 -0.00293975 -0.001407 -0.000112 0.00094639 0.0017671 

10 -0.00302131 -0.00147 -0.000165 0.00089249 0.0017034 
15 -0.00307314 -0.001488 -0.000169 0.00088527 0.0016739 
20 -0.00306927 -0.00144 -0.000102 0.00094489 0.0017001 
24 -0.00302608 -0.001353 2.66E-06 0.00104071 0.0017612 

 

Table A.23 𝐶௟,ఋ௔ for 𝛼 = 10 

𝜹𝒆 -20 -10 0 10 20 
M 𝑪𝒍,𝜹𝒂 𝑪𝒍,𝜹𝒂 𝑪𝒍,𝜹𝒂 𝑪𝒍,𝜹𝒂 𝑪𝒍,𝜹𝒂 
0.3 -0.02339649 -0.01062 0.0002699 0.01091403 0.0202424 
0.7 -0.02558012 -0.011323 0.0004172 0.01170205 0.0224466 
0.9 -0.02518862 -0.011832 0.0005029 0.01226155 0.0227526 
1.5 -0.00297225 -0.001447 -0.000156 0.00090145 0.0017245 
2.5 -0.0030156 -0.001482 -0.000186 0.00087205 0.0016923 
4 -0.0030823 -0.001531 -0.000226 0.00083151 0.0016424 
6 -0.00317434 -0.001589 -0.00027 0.00078407 0.0015727 

10 -0.00336912 -0.001684 -0.000324 0.00071193 0.0014226 
15 -0.00363264 -0.001759 -0.000327 0.00066436 0.001215 
20 -0.00391842 -0.001788 -0.00026 0.00066414 0.0009851 
24 -0.00416308 -0.001776 -0.000156 0.00069805 0.0007851 

 

Table A.24 𝐶௡,ఋ௔ for 𝛼 = −1 

𝜹𝒆 -20 -10 0 10 20 
M 𝑪𝒏,𝜹𝒂 𝑪𝒏,𝜹𝒂 𝑪𝒏,𝜹𝒂 𝑪𝒏,𝜹𝒂 𝑪𝒏,𝜹𝒂 
0.3 -0.00100531 -0.0001703 -2.06E-21 0.00017035 0.00100531 



133 
 

0.7 -0.00092184 -0.0001286 -2.06E-21 0.0001286 0.00092184 
0.9 -0.00088013 -0.0001077 -2.06E-21 0.00010773 0.00088013 
1.5 0.001184831 0.00046516 0.0001395 0.00020784 0.00067019 
2.5 0.001150731 0.00043194 0.00010716 0.0001764 0.00063966 
4 0.001102663 0.00038517 6.1717E-05 0.00013231 0.00059695 
6 0.001044324 0.00032853 6.84E-06 7.92E-05 0.00054576 
10 0.000947365 0.00023487 -8.334E-05 -7.27E-06 0.00046309 
15 0.00086314 0.00015458 -0.0001593 -7.86E-05 0.00039672 
20 0.000819997 0.00011517 -0.0001945 -0.00010912 0.00037144 
24 0.000815062 0.00011306 -0.0001933 -0.00010408 0.00038079 

 

Table A.25 𝐶௡,ఋ௔ for 𝛼 = 4 

𝜹𝒆 -20 -10 0 10 20 
M 𝑪𝒏,𝜹𝒂 𝑪𝒏,𝜹𝒂 𝑪𝒏,𝜹𝒂 𝑪𝒏,𝜹𝒂 𝑪𝒏,𝜹𝒂 
0.3 -0.00098888 -0.0001622 -4.39E-19 0.00016218 0.00098888 
0.7 -0.00091825 -0.0001274 -4.39E-19 0.00012737 0.00091825 
0.9 -0.0008821 -0.0001098 -4.39E-19 0.00010984 0.0008821 
1.5 0.001280331 0.00055382 0.00022141 0.00028311 0.0007389 
2.5 0.0012555 0.00052515 0.00018908 0.00024729 0.00069978 
4 0.001221652 0.00048528 0.00014363 0.00019671 0.0006445 
6 0.001182865 0.000438 8.8752E-05 0.00013513 0.00057714 
10 0.00112704 0.00036355 -1.42E-06 3.21E-05 0.00046416 
15 0.00109804 0.00030823 -7.742E-05 -5.89E-05 0.00036372 
20 0.001114352 0.00029484 -0.0001126 -0.00010804 0.00030859 
24 0.001160026 0.00031432 -0.0001114 -0.00011714 0.00029711 

 

Table A.26 𝐶௡,ఋ௔ for 𝛼 = 10 

𝜹𝒆 -20 -10 0 10 20 
M 𝑪𝒏,𝜹𝒂 𝑪𝒏,𝜹𝒂 𝑪𝒏,𝜹𝒂 𝑪𝒏,𝜹𝒂 𝑪𝒏,𝜹𝒂 
0.3 -0.00096759 -0.0001522 -1.30E-17 0.00015216 0.00096759 
0.7 -0.00090367 -0.0001235 -1.30E-17 0.00012352 0.00090367 
0.9 -0.00087883 -0.0001078 -1.30E-17 0.00010783 0.00087883 
1.5 0.001353595 0.00061825 0.00027754 0.00033146 0.00078002 
2.5 0.001341375 0.00059541 0.0002452 0.00029076 0.00073208 
4 0.00132822 0.00056473 0.00019976 0.00023329 0.00066534 
6 0.00132034 0.00053053 0.00014488 0.00016337 0.00058602 
10 0.0013377 0.0004851 0.0000547 4.65E-05 0.0004605 
15 0.0014215 0.00047138 -0.0000213 -5.65E-05 0.0003657 
20 0.0015743 0.0005055 -5.65E-05 -0.0001117 0.0003399 
24 0.00174622 0.00056725 -5.53E-05 -0.00012139 0.00036894 
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Table A.27 𝐶௒,ఋ௥ for 𝛼 = −1 

𝜹𝒆 -20 -10 0 10 20 
M 𝑪𝒀,𝜹𝒓 𝑪𝒀,𝜹𝒓 𝑪𝒀,𝜹𝒓 𝑪𝒀,𝜹𝒓 𝑪𝒀,𝜹𝒓 
0.3 -0.00016824 -8.41E-05 0 8.41E-05 0.00016824 
0.7 -8.06E-05 -4.03E-05 0 4.03E-05 8.06E-05 
0.9 -3.67E-05 -1.84E-05 0 1.84E-05 3.67E-05 
1.5 -0.03440634 -0.0176367 1.21E-18 0.01763668 0.03440634 
2.5 -0.02327535 -0.0120712 2.65E-18 0.01207124 0.02327535 
4 -0.00657853 -0.003723 2.30E-17 0.00372303 0.00657853 
6 -0.0065988 -0.0032994 -3.63E-19 0.0032994 0.0065988 

10 -0.005722 -0.002861 3.81E-19 0.002861 0.005722 
15 -0.004626 -0.002313 1.31E-18 0.002313 0.004626 
20 -0.00353 -0.001765 2.24E-18 0.001765 0.00353 
24 -0.0026532 -0.0013266 2.99E-18 0.0013266 0.0026532 

 

Table A.28 𝐶௟,ఋ௥ for 𝛼 = −1 

𝜹𝒆 -20 -10 0 10 20 
M 𝑪𝒍,𝜹𝒓 𝑪𝒍,𝜹𝒓 𝑪𝒍,𝜹𝒓 𝑪𝒍,𝜹𝒓 𝑪𝒍,𝜹𝒓 
0.3      
0.7      
0.9      
1.5 -0.00223369 -0.0011168 -5.23E-19 0.00111685 0.00223369 
2.5 -0.00216159 -0.0010808 -4.97E-19 0.0010808 0.00216159 
4 -0.00205344 -0.0010267 -4.56E-19 0.00102672 0.00205344 
6 -0.00190923 -0.0009546 -4.03E-19 0.00095462 0.00190923 

10 -0.00162082 -0.0008104 -2.95E-19 0.00081041 0.00162082 
15 -0.0012603 -0.0006302 -1.61E-19 0.00063015 0.0012603 
20 -0.00089979 -0.0004499 -2.70E-20 0.0004499 0.00089979 
24 -0.00061138 -0.0003057 8.04E-20 0.00030569 0.00061138 

 

Table A.29 𝐶௟,ఋ௥ for 𝛼 = 4 

𝜹𝒆 -20 -10 0 10 20 
M 𝑪𝒍,𝜹𝒓 𝑪𝒍,𝜹𝒓 𝑪𝒍,𝜹𝒓 𝑪𝒍,𝜹𝒓 𝑪𝒍,𝜹𝒓 
0.3      
0.7      
0.9      
1.5 -0.00197379 -0.0009869 -2.36E-19 0.00098689 0.00197379 
2.5 -0.00190724 -0.0009536 -2.26E-19 0.00095362 0.00190724 
4 -0.00180742 -0.0009037 -2.11E-19 0.00090371 0.00180742 
6 -0.00167432 -0.0008372 -1.92E-19 0.00083716 0.00167432 
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10 -0.00140813 -0.0007041 -1.53E-19 0.00070406 0.00140813 
15 -0.00107538 -0.0005377 -1.04E-19 0.00053769 0.00107538 
20 -0.00074264 -0.0003713 -5.54E-20 0.00037132 0.00074264 
24 -0.00047645 -0.0002382 -1.64E-20 0.00023823 0.00047645 

 

Table A.30 𝐶௟,ఋ௥ for 𝛼 = 10 

𝜹𝒆 -20 -10 0 10 20 
M 𝑪𝒍,𝜹𝒓 𝑪𝒍,𝜹𝒓 𝑪𝒍,𝜹𝒓 𝑪𝒍,𝜹𝒓 𝑪𝒍,𝜹𝒓 
0.3      
0.7      
0.9      
1.5 -0.0016619 -0.0008309 1.10E-19 0.00083095 0.0016619 
2.5 -0.00160201 -0.000801 9.92E-20 0.00080101 0.00160201 
4 -0.00151219 -0.0007561 8.31E-20 0.0007561 0.00151219 
6 -0.00139242 -0.0006962 6.15E-20 0.00069621 0.00139242 

10 -0.00115289 -0.0005764 1.84E-20 0.00057645 0.00115289 
15 -0.00085348 -0.0004267 -3.55E-20 0.00042674 0.00085348 
20 -0.00055407 -0.000277 -8.95E-20 0.00027703 0.00055407 
24 -0.00031454 -0.0001573 -1.33E-19 0.00015727 0.00031454 

 

Table A.31 𝐶௡,ఋ௥ for 𝛼 = −1 

𝜹𝒆 -20 -10 0 10 20 
M 𝑪𝒏,𝜹𝒓 𝑪𝒏,𝜹𝒓 𝑪𝒏,𝜹𝒓 𝑪𝒏,𝜹𝒓 𝑪𝒏,𝜹𝒓 
0.3      
0.7      
0.9      
1.5 0.01033361 0.00516681 3.00E-18 -0.00516681 -0.0103336 
2.5 0.00999735 0.00499868 2.85E-18 -0.00499868 -0.0099974 
4 0.00949296 0.00474648 2.64E-18 -0.00474648 -0.009493 
6 0.00882044 0.00441022 2.36E-18 -0.00441022 -0.0088204 
10 0.0074754 0.0037377 1.79E-18 -0.0037377 -0.0074754 
15 0.0057941 0.00289705 1.08E-18 -0.00289705 -0.0057941 
20 0.0041128 0.0020564 3.75E-19 -0.0020564 -0.0041128 
24 0.00276776 0.00138388 -1.92E-19 -0.00138388 -0.0027678 
 

Table A.31 𝐶௡,ఋ௥ for 𝛼 = 4 

𝜹𝒆 -20 -10 0 10 20 
M 𝑪𝒏,𝜹𝒓 𝑪𝒏,𝜹𝒓 𝑪𝒏,𝜹𝒓 𝑪𝒏,𝜹𝒓 𝑪𝒏,𝜹𝒓 
0.3      
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0.7      
0.9      
1.5 0.00899056 0.00449528 1.32E-18 -0.00449528 -0.0089906 
2.5 0.0086856 0.0043428 1.26E-18 -0.0043428 -0.0086856 
4 0.00822816 0.00411408 1.16E-18 -0.00411408 -0.0082282 
6 0.00761824 0.00380912 1.03E-18 -0.00380912 -0.0076182 
10 0.0063984 0.0031992 7.82E-19 -0.0031992 -0.0063984 
15 0.0048736 0.0024368 4.66E-19 -0.0024368 -0.0048736 
20 0.0033488 0.0016744 1.50E-19 -0.0016744 -0.0033488 
24 0.00212896 0.00106448 -1.03E-19 -0.00106448 -0.002129 
 

Table A.31 𝐶௡,ఋ௥ for 𝛼 = 10 

𝜹𝒆 -20 -10 0 10 20 
M 𝑪𝒏,𝜹𝒓 𝑪𝒏,𝜹𝒓 𝑪𝒏,𝜹𝒓 𝑪𝒏,𝜹𝒓 𝑪𝒏,𝜹𝒓 
0.3      
0.7      
0.9      
1.5 0.0073789 0.00368945 -6.94E-19 -0.00368945 -0.0073789 
2.5 0.0071115 0.00355575 -6.63E-19 -0.00355575 -0.0071115 
4 0.0067104 0.0033552 -6.16E-19 -0.0033552 -0.0067104 
6 0.0061756 0.0030878 -5.54E-19 -0.0030878 -0.0061756 
10 0.005106 0.002553 -4.30E-19 -0.002553 -0.005106 
15 0.003769 0.0018845 -2.75E-19 -0.0018845 -0.003769 
20 0.002432 0.001216 -1.20E-19 -0.001216 -0.002432 
24 0.0013624 0.0006812 4.00E-21 -0.0006812 -0.0013624 
 

*For 𝐶௒,ఋ௥ values for 𝛼 = 4 and 𝛼 = 10 is zero. 
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APPENDIX B 

AHV Model Simulation Code 

The program code for the AHV model simulation is given below.  

/ ------------------- AHV 3 DOF ---------------------------- 
//=========================== 
ccMem1=[0    -0.032973194        
0.7    -0.038553848 
0.9    -0.041309714 
1.5    -0.005497759 
2.5    -0.005375465 
4    -0.005192024 
6    -0.004947436 
10    -0.00445826 
15    -0.00384679 
20    -0.00323532 
24    -0.002746144] 
ccMe4=[0    -0.03812239 
0.7    -0.042548469 
0.9    -0.044990884 
1.5    -0.006323289 
2.5    -0.006233015 
4    -0.006097604 
6    -0.005917056 
10    -0.00555596 
15    -0.00510459 
20    -0.00465322 
24    -0.004292124] 
ccMe10=[0    -0.042484051 
0.7    -0.048334559 
0.9    -0.049702354 
1.5    -0.007313925 
2.5    -0.007262075 
4    -0.0071843 
6    -0.0070806 
10    -0.0068732 
15    -0.00661395 
20    -0.0063547 
24    -0.0061473] 
ccLm1=[0.0    -0.018297169 
0.7    -0.020004771 
0.9    -0.020009696 
1.5    -0.038046197 
2.5    -0.043225858 
4    -0.04412589 
6    -0.014222008 
10    -0.022666584 
15    -0.014376709 
20    -0.004556884 
24    0.004940828] 
ccL4=[0.0    0.06762333 
0.7    0.078826588 
0.9    0.08553757 
1.5    0.080517511 
2.5    0.059178313 
4    0.039302282 
6    0.062810272 
10    0.045480736 
15    0.043068736 
20    0.042635936 
24    0.044255008] 
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ccL10=[0.0    0.207304831 
0.7     0.237821465 
0.9     0.255647812 
1.5     0.20236353 
2.5     0.149064336 
4    0.1041236 
6    0.147721312 
10    0.12226 
15    0.1119475 
20    0.10613 
24    0.105252688] 
ccLem1 = [0    0.059074397  
        0.7    0.065822819 
        0.9    0.069099065 
        1.5    0.039986708 
        2.5    0.019732487 
        4    0.008563902 
        6    0.0070419 
        10    0.0063403 
        15    0.0054633 
        20    0.0045863 
        24    0.0038847];     
ccLe4  = [0    0.074206008 
        0.7    0.081501733 
        0.9    0.085621739 
        1.5    0.047460743 
        2.5    0.023969521 
        4    0.005751972 
        6    0.0081409 
        10    0.0076013 
        15    0.0069268 
        20    0.0062523 
        24    0.0057127]; 
ccLe10 = [0    0.089411461 
        0.7    0.100607611 
        0.9    0.095579868 
        1.5    0.063431225 
        2.5    0.027466063 
        4    -0.001415542 
        6    0.0094597 
        10    0.0091145 
        15    0.008683 
        20    0.0082515 
        24    0.0079063]; 
ccDm1=[0.0    0.010948266 
0.7    0.020227468 
0.9    0.043923569 
1.5    0.048491413 
2.5    0.041371981 
4    0.026863349 
6    0.002346163 
10    0.001256723 
15    0.002413348 
20    0.004498873 
24    0.005059249] 
ccD4=[0.0    0.012444198 
0.7    0.02581343 
0.9    0.04991365 
1.5    0.050920647 
2.5    0.042159237 
4    0.026393963 
6    0.012093798 
10    0.008639238 
15    0.006934301 
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20    0.006263638 
24    0.004694934] 
ccD10=[0.0    0.044157929 
0.7    0.059233737 
0.9    0.092844534 
1.5    0.085548073 
2.5    0.066008756 
4    0.042758767 
6    0.037674232 
10    0.031975 
15    0.027995313 
20    0.02564 
24    0.023148448] 
cc=[0.0 -0.06813941 
0.7 -0.026598627 
0.9 -0.031130145 
1.5 -0.020888463 
2.5 -0.00606527 
15.6  0.000279095] 
ccL=[0.0    0.207304831 
0.7     0.237821465 
0.9     0.255647812 
1.5     0.20236353 
2.5     0.149064336 
4    0.1041236 
6    0.147721312 
10    0.12226 
15    0.1119475 
20    0.10613 
24    0.105252688] 
ccD=[0.0    0.044157929 
0.7    0.059233737 
0.9    0.092844534 
1.5    0.085548073 
2.5    0.066008756 
4    0.042758767 
6    0.037674232 
10    0.031975 
15    0.027995313 
20    0.02564 
24    0.023148448] 
ccCmq1=[//0 -1.12505 
        0.3    -1.12505 
        0.7    -1.25005 
        0.9    -1.31255 
        1.5    -0.793902325 
        2.5    -0.600395587 
        4    -0.480870631 
        6    -0.32726331 
        10    -0.24736507 
        15    -0.22202757 
        20    -0.24835007 
        24    -0.30004623]; 
ccCmq4=[//0 -1.12505 
        0.3    -1.12505 
        0.7    -1.25005 
        0.9    -1.31255 
        1.5    -0.79852436 
        2.5    -0.593415603 
        4    -0.487345476 
        6    -0.34397456 
        10    -0.26314832 
        15    -0.23796707 
        20    -0.26590832 
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        24    -0.31995248]; 
ccCmq10=[//0 -1.12505 
        0.3    -1.12505 
        0.7    -1.25005 
        0.9    -1.31255 
        1.5    -0.798259773 
        2.5    -0.601149375 
        4    -0.61499736 
        6    -0.46735304 
        10    -0.39365 
        15    -0.38474375 
        20    -0.43715 
        24    -0.51666296]; 
ccMm1=[0.0    0.000303381 
0.7    0.00052382 
0.9    9.86E-05 
1.5    0.005692055 
2.5    0.005857435 
4    -0.002869432 
6    0.002746997 
10    0.003574237 
15    0.001070549 
20    -0.001118163 
24    -0.002592747] 
ccM4=[0.0    -0.016813941 
0.7    -0.026598627 
0.9    -0.031130145 
1.5    -0.020888463 
2.5    -0.00606527 
4    0.000279095 
6    -0.002659505 
10    0.001507254 
15    0.002983567 
20    0.004558854 
24    0.00593995] 
ccM10=[0.0    -0.057671239 
0.7    -0.053565003 
0.9    -0.057619331 
1.5    -0.045453914 
2.5    -0.013739854 
4    0.004721997 
6    -0.009275672 
10    -0.002318 
15    0.001558313 
20    0.004324 
24    0.005786504] 
//    M     = [0 0.3 0.7 0.9 1.5 2.5 4 6 10 15 20 24]; 
//    PLA   = 0:0.1:1.1;            //% pilot lever angle (0% to 100%) 
//  cch1     = []0:20000:200000; 
ccPLA1  =  [0    0  
           0.3  0.1 
           0.7   0.2 
           0.9   0.3 
           1.5   0.4 
           2.5   0.5 
           4.    0.6 
           6.    0.7 
           10.   0.8 
           15.   0.9 
           20.   1.  
           24.   1.1];  
//===================================== 
    time=0; 
    timec=5; 
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    pi=22/7; 
    rho=1.225; 
    Vel=1; 
    theta=0/57.3; 
    q=0; 
    R=0; 
    H=0; 
    pitch=2/57.3; 
    mass=5080;//136080; 
    g    = 9.81;                             
    Inertia = 50*10^5;//5*174/13; 
    Cd_b = 0.85;                      
    dia= 25;//.122; 
    A_ref=350;//0.0116839;//3.14*dia*dia/4; 
     
function ydot=f(t, y) 
  Vel  =  y(1);  
  theta =  y(2);                      
  q  =  y(3);  
  pitch  =  y(4);   
  time  =  y(5); 
    Pow3=0; 
    Pow2=0; 
    Pow1=0; 
    timec = time; 
    del_e = 0; 
//    Tmax    =  1467900 ;    //% maximum thrust, N 
//    g       = 9.81 ;        //% m/s_sq. 
//    Isp     = 1000*g  ;    //% specific impulse, g sec 
//    PLA = 0.1 
//    Pow   = PLA*(Tmax) ; 
 alpha=pitch-theta; 
 rho=1.225; 
 q_bar=0.5*rho*(Vel^2);                       
  
  alp=alpha*57.3;       
  dash=dia/(2*Vel); 
//Cd_p= 0.51*alp + 0.1383; 
//Cl=2*3.14*alpha; 
//Cm=-011.6*alp ; 
//============================================ 
Dm1=interp1(ccDm1(:,1),ccDm1(:,2),Vel/340,'linear') 
D4=interp1(ccD4(:,1),ccD4(:,2),Vel/340,'linear') 
D10=interp1(ccD10(:,1),ccD10(:,2),Vel/340,'linear') 
ccD=[-1  Dm1; 4 D4;10 D10 ] 
yyD=interp1(ccD(:,1),ccD(:,2),alp,'linear') 
Cd_p= yyD; 
//======================================== 
Lm1=interp1(ccLm1(:,1),ccLm1(:,2),Vel/340,'linear') 
L4=interp1(ccL4(:,1),ccL4(:,2),Vel/340,'linear') 
L10=interp1(ccL10(:,1),ccL10(:,2),Vel/340,'linear') 
ccL=[-1  Lm1; 4 L4;10 L10 ] 
yyL=interp1(ccL(:,1),ccL(:,2),alp,'linear') 
Cl=yyL; 
//============================================= 
//Lem1=interp1(ccLem1(:,1),ccLem1(:,2),Vel/340,'linear') 
//Le4=interp1(ccLe4(:,1),ccLe4(:,2),Vel/340,'linear') 
//Le10=interp1(ccLe10(:,1),ccLe10(:,2),Vel/340,'linear') 
//ccLe=[-1  Lem1; 4 Le4; 10 Le10 ] 
//Cl_m10e=interp1(ccLe(:,1),ccLe(:,2),alp,'linear') // for -20 deflection 
//ccLee=[10 -Cl_m10e; 0  Cl_0e; -10 Cl_m10e ] 
//Cl=interp1(ccLee(:,1),ccLee(:,2),del_e,'linear') 
//============================================ 
Mm1=interp1(ccMm1(:,1),ccMm1(:,2),Vel/340,'linear') 
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M4=interp1(ccM4(:,1),ccM4(:,2),Vel/340,'linear') 
M10=interp1(ccM10(:,1),ccM10(:,2),Vel/340,'linear') 
ccM=[-1  Mm1; 4 M4;10 M10 ] 
Cm_alpha=interp1(ccM(:,1),ccM(:,2),alp,'linear') 
Cma_0e=Cm_alpha ; // a=alpha 
//Cm_q=-0.6; 
//============================================ 
Mem1=interp1(ccMem1(:,1),ccMem1(:,2),Vel/340,'linear') 
Me4=interp1(ccMe4(:,1),ccMe4(:,2),Vel/340,'linear') 
Me10=interp1(ccMe10(:,1),ccMe10(:,2),Vel/340,'linear') 
ccMe=[-1  Mem1; 4 Me4; 10 Me10 ] 
Cma_m10e=interp1(ccMe(:,1),ccMe(:,2),alp,'linear') // for -20 deflection 
ccMee=[10 -Cma_m10e; 0  Cma_0e; -10 Cma_m10e ] 
Cm=interp1(ccMee(:,1),ccMee(:,2),del_e,'linear') 
//Cm=interp1(Cma_0e,Cma_m10e,1,'linear') //del_e=1 
//====================================================================== 
cmq1=interp1(ccCmq1(:,1),ccCmq1(:,2),Vel/340,'spline') 
cmq4=interp1(ccCmq4(:,1),ccCmq4(:,2),Vel/340,'spline') 
cmq10=interp1(ccCmq10(:,1),ccCmq10(:,2),Vel/340,'spline') 
ccCmq=[-1  cmq1; 4 cmq4;10 cmq10 ] 
yyCmq=interp1(ccCmq(:,1),ccCmq(:,2),alp,'spline') 
Cm_q=yyCmq ; 
//=====================================================================  
//PLA=interp1(ccPLA1(:,1),ccPLA1(:,2),Vel/340,'linear') // not working 
//=====================================================================  
//    PLA = 1; 
    h   = 140 ;  
    M   = Vel/340; 
//    Pow = PLA.*(7.53e02.*(M.^7) - 1.50e04.*(M.^6) + 1.16e05.*(M.^5)... 
//       - 4.36e05.*(M.^4) + 8.07e05.*(M.^3) - 6.97e05.*(M.^2)... 
//         + 3.94e05.*(M) + 3.93e-08); 
    Pow=0.6*120000*4.44822; 
    CX=-Cd_p;   
    CY=Cl; 
    Cmm_p=Cm+Cm_q*q*dash; 
  FA_X=q_bar*350*CX;                   
  FA_Y=q_bar*350*CY;                    
  M_z=q_bar*350*dia*Cmm_p; 
    ydot(1)=(1/mass)*(Pow*cos(alpha)-FA_X-mass*g*sin(theta)); 
    ydot(2)=(1/(mass*Vel))*(Pow*sin(alpha)+FA_Y-mass*g*cos(theta)); 
    ydot(3)=M_z/Inertia; 
    ydot(4)=q; 
    ydot(5)=1; 
//    ydot(1)=(1/mass)*(FA_X+Pow-mass*g*sin(theta)-mass*q*Vel*tan(alpha)-mass*Vel); 
// 
ydot(2)=(FA_Y*(cos(alpha))^2)/Vel+(mass*g*cos(theta)*(cos(alpha))^2)/Vel+mass*q*(cos(alpha))^
2-(mass*sin(alpha)*cos(alpha)*ydot(1))/Vel; 
//    ydot(3)=q; 
//    ydot(4)=(M_z/Inertia)-q; 
//    ydot(5)=1; 
endfunction 
 
t0=0; 
y0=[Vel;theta;q;pitch;time]; 
//   1    2   3   4    5    
t=0:.01:6.7; 
y = ode(y0,t0,t,f); 
subplot(231);plot(t,y(1,:)./340,'r');xlabel("t", "fontsize", 2);ylabel("M", "fontsize", 2); 
subplot(232);plot(t,y(2,:).*57.3,'r');xlabel("t", "fontsize", 2);ylabel("gama", "fontsize", 2); 
subplot(233);plot(t,y(4,:).*57.3,'r');xlabel("t", "fontsize", 2);ylabel("theta", "fontsize", 2); 
subplot(234);plot(y(1,:)./340,(y(4,:)-y(2,:)).*57.3,'r');xlabel("M", "fontsize", 3);ylabel("alpha", 
"fontsize", 3); 
subplot(235);plot(t,y(4,:),'r');xlabel("t", "fontsize", 2);ylabel("q", "fontsize", 2); 
subplot(236);plot(y(1,:)./340,y(5,:),'b');xlabel("M", "fontsize", 2);ylabel("del_e", "fontsize", 2); 
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//-------------------Trim Model of AHV----------M = 0.9 
    time=0; 
    pi=22/7 
    mass=136080 
    g = 9.81                            
    Inertia_yy = 5000000 
    dia= 25 
    Aref=350 
    mass=136080 
    h_ft=10000 
    h=h_ft*0.3048;          //in ft*meter 
    rho_o =  2.377e-3 ;     //% slug/ft3 
//    if h < 36089 
        rho1  =  rho_o*((1 - 6.875*(1e-6)*h_ft).^4.2561) ;  //% air density  
//    else 
//      rho1  = 0.2971*rho_o*exp(-(h_ft - 36089)/20806.7) ; 
//    end 
    rho = rho1*515.379;   //  kg/m^3 
    sspeed = sqrt(1.4*287*(288.15-6.5*(h/1000))); 
    hft  = h_ft; 
    Vel  = 0.9*sspeed; 
    alpha= 0/57.3; 
    theta= 0/57.3; //89/57.3; //-1.5708/57.3; //-1.3961606 
    gama = 0/57.3; //-89/57.3; 
    q=0; 
//    h=10000; 
//    pitch=10/57.3;              
 
function ydot=f(t, y) 
  Vel  =  y(1);  
  gama  =  y(2); 
  alpha =  y(3); 
  theta =  y(4);                      
     q  =  y(5); 
   hft  =  y(6); 
    dele = 0; 
    PLA = 0.3; 
    M   = Vel/sspeed; 
    hft = h/0.3048 
//  Subsonic Engine     
    Pow1= PLA*(2.99*(10^5)-10*hft+1.33*(10^(-4))*hft*hft-6.48*(10^(-
10))*(hft.^3)+3.75*(10^3)*M.^3); 
    Pow = 4.44822*Pow1; 
    CD=0.5*rho*(Vel*Vel)*Aref*(0.00005*alpha*57.3+0.00006*dele) 
    CL=0.5*rho*(Vel*Vel)*Aref*(0.0252*alpha*57.3-0.0032*dele) 
    Cm=0.5*rho*(Vel*Vel)*Aref*dia*(-0.0052*alpha*57.3+0.0024*dele-1.31255*q*dia/(2*Vel)) 
    ydot(1)=(1/mass)*(Pow*cos(alpha)-CD-mass*g*sin(theta)); 
    ydot(2)=(1/(mass*Vel))*Pow*sin(alpha)-CL*(1/(mass*Vel))+g*cos(theta)*(1/Vel); 
    ydot(3)=q-(1/(mass*Vel))*Pow*sin(alpha)-CL*(1/(mass*Vel))+g*cos(theta)*(1/Vel); 
    ydot(4)=q; 
    ydot(5)=Cm/(2*Inertia_yy); 
    ydot(6)=Vel*sin(gama); 
endfunction 
t0=0; 
y0=[Vel;gama;alpha;theta;q;h]; 
//   1    2   3   4    5    
t=0:.01:10; 
y = ode(y0,t0,t,f); 
subplot(331);plot(t,y(1,:)./sspeed,'b');xlabel("t", "fontsize", 2);ylabel("M", "fontsize", 2); 
subplot(332);plot(t,y(2,:).*57.3,'b');xlabel("t", "fontsize", 2);ylabel("gama", "fontsize", 2); 
subplot(333);plot(t,y(3,:).*57.3,'b');xlabel("t", "fontsize", 2);ylabel("alpha", "fontsize", 2); 
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subplot(334);plot(t,y(4,:).*57.3,'b');xlabel("t", "fontsize", 2);ylabel("theta", "fontsize", 2); 
subplot(335);plot(t,y(5,:),'b');xlabel("t", "fontsize", 2);ylabel("q", "fontsize", 2); 
subplot(336);plot(t,y(6,:)./0.3048,'b');xlabel("t", "fontsize", 2);ylabel("h", "fontsize", 2); 
 
//-------------------Trim Model of AHV----------M = 4 
   time=0; 
    pi=22/7 
    mass=136080 
    g = 9.81                            
    Inertia_yy = 5000000 
    dia= 25 
    Aref=350 
    mass=136080 
    h_ft=50000 
    h=h_ft*0.3048;          //in ft*meter 
    rho_o =  2.377e-3 ;     //% slug/ft3 
//    if h < 36089 
//      rho1  =  rho_o*((1 - 6.875*(1e-6)*h_ft).^4.2561) ;  //% air density  
//    else 
        rho1 = 0.2971*rho_o*exp(-(h_ft - 36089)/20806.7) ; 
//    end 
    rho = rho1*515.379;   //  kg/m^3 
    sspeed = sqrt(1.4*287*(288.15-6.5*(h/1000))); 
    Vel  =4*sspeed; 
    alpha=0/57.3; 
    theta=0/57.3;//-1.5708/57.3; //-1.3961606 
    gama =0/57.3; 
    q=0; 
//    h=10000; 
//    pitch=10/57.3;              
 
function ydot=f(t, y) 
   Vel  =  y(1);  
  gama  =  y(2); 
  alpha =  y(3); 
  theta =  y(4);                      
     q  =  y(5); 
   hft  =  y(6); 
    dele = 0; 
    PLA = 0.6; 
    M   = Vel/sspeed; 
    hft=h/0.3048 
 //  Ramjet/Scramjet Engine 
    Pow2 = PLA*(-1.8585*10^3+2.6294*10^3*M-9.5423*10^2*M*M+1.0834*10^2*(M^3)); 
    Pow  = 4.44822*Pow2; 
    CD=0.5*rho*(Vel*Vel)*Aref*(-0.0009*alpha*57.3-0.0039*dele); 
//0.0257+0.0003*(alpha*57.3)^2+0.0001*(dele^2) 
    CL=0.5*rho*(Vel*Vel)*Aref*(0.0134*alpha*57.3+0.005*dele); // -0.0249-0.0002*(dele^2) 
    Cm=0.5*rho*(Vel*Vel)*Aref*dia*(0.0007*alpha*57.3+0.0006*dele-0.480870631*q*dia/(2*Vel));  
     ydot(1)=(1/mass)*(Pow*cos(alpha)-CD-mass*g*sin(theta)); 
    ydot(2)=(1/(mass*Vel))*Pow*sin(alpha)-CL*(1/(mass*Vel))+g*cos(theta)*(1/Vel); 
    ydot(3)=q-(1/(mass*Vel))*Pow*sin(alpha)-CL*(1/(mass*Vel))+g*cos(theta)*(1/Vel); 
    ydot(4)=q; 
    ydot(5)=Cm/(2*Inertia_yy); 
    ydot(6)=Vel*sin(theta); 
endfunction 
 
//-------------------Trim Model of AHV----------M = 6 
Vel=6*sspeed; 
M = Vel/sspeed; 
alpha=0/57.3; 
theta=0/57.3;//-1.5708/57.3; //-1.3961606 
gama =0/57.3; 
q=0; 
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function ydot=f(t, y) 
Vel  =  y(1);  
gama  =  y(2); 
alpha =  y(3); 
theta =  y(4);                      
 q  =  y(5); 
hft  =  y(6); 
dele = 0; 
PLA = 0.7; 
M   = Vel/sspeed; 
hft=h/0.3048 
//  Ramjet/Scramjet Engine 
Pow2 = PLA*(-1.8585*10^3+2.6294*10^3*M-9.5423*10^2*M*M+1.0834*10^2*(M^3)); 
Pow  = 4.44822*Pow2; 
CD=0.5*rho*(Vel*Vel)*Aref*(0.0013*alpha*57.3-0.0006*dele); 
//0.0002*(alpha*57.3)^2+0.00003*(dele^2)+0.0035 
CL=0.5*rho*(Vel*Vel)*Aref*(0.0147*alpha*57.3-0.0006*dele); //+0.000008*(dele^2)+0.0017 
Cm=0.5*rho*(Vel*Vel)*Aref*dia*(-0.0011*alpha*57.3-0.000005*dele-0.32726331*q*dia/(2*Vel));  
ydot(1)=(1/mass)*(Pow*cos(alpha)-CD-mass*g*sin(theta)); 
ydot(2)=(1/(mass*Vel))*Pow*sin(alpha)-CL*(1/(mass*Vel))+g*cos(theta)*(1/Vel); 
ydot(3)=q-(1/(mass*Vel))*Pow*sin(alpha)-CL*(1/(mass*Vel))+g*cos(theta)*(1/Vel); 
ydot(4)=q; 
ydot(5)=Cm/(2*Inertia_yy); 
ydot(6)=Vel*sin(gama); 
endfunction 
 
//-------------------Trim Model of AHV----------M = 10 
Vel=10*sspeed; 
alpha=0/57.3; 
theta=0/57.3;   //-1.5708/57.3; //-1.3961606 
gama =0/57.3; 
q=0; 
 
function ydot=f(t, y) 
Vel  =  y(1);  
gama  =  y(2); 
alpha =  y(3); 
theta =  y(4);                      
 q  =  y(5); 
hft  =  y(6); 
dele = 0; 
PLA = 0.8; 
M   = Vel/sspeed; 
hft = h/0.3048; 
//  Rocket Engine 
Pow3 = -5.43*10^4+0.664*hft+3.24*10^5*PLA+0.374*hft*PLA; 
Pow=4.44822*Pow3; 
CD=0.5*rho*(Vel*Vel)*Aref*(0.0008*alpha-0.0004*dele); 
//0.0019+0.0002*(alpha^2)+0.00002*(dele^2) 
CL=0.5*rho*(Vel*Vel)*Aref*(0.0132*alpha+0.001*dele);  //-0.0087-0.00004*(dele^2)  
Cm=0.5*rho*(Vel*Vel)*Aref*dia*(-0.0004*alpha-0.0003*dele-0.24736507*q*dia/(2*Vel));  
ydot(1)=(1/mass)*(Pow*cos(alpha)-CD-mass*g*sin(theta)); 
ydot(2)=(1/(mass*Vel))*Pow*sin(alpha)-CL*(1/(mass*Vel))+g*cos(theta)*(1/Vel); 
ydot(3)=q-(1/(mass*Vel))*Pow*sin(alpha)-CL*(1/(mass*Vel))+g*cos(theta)*(1/Vel); 
ydot(4)=q; 
ydot(5)=Cm/(2*Inertia_yy); 
ydot(6)=Vel*sin(gama)./100; 
endfunction 
 
//-------------------Trim Model of AHV----------M = 15 
Vel=15*sspeed; 
alpha=0/57.3; 
theta=0/57.3;   //-1.5708/57.3; //-1.3961606 
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gama =0/57.3; 
q=0; 
 
function ydot=f(t, y) 
Vel  =  y(1);  
gama  =  y(2); 
alpha =  y(3); 
theta =  y(4);                      
 q  =  y(5); 
hft  =  y(6); 
dele = 0; 
PLA = 0.9; 
M   = Vel/sspeed; 
hft = h/0.3048; 
//  Rocket Engine 
Pow3 = -5.43*10^4+0.664*hft+3.24*10^5*PLA+0.374*hft*PLA; 
Pow=4.44822*Pow3; 
CD=0.5*rho*(Vel*Vel)*Aref*(0.0002*alpha-0.0005*dele);  
CL=0.5*rho*(Vel*Vel)*Aref*(0.0115*alpha+0.0002*dele); //-0.0029-0.00002*(dele^2)-
0.00002*(dele^2) 
Cm=0.5*rho*(Vel*Vel)*Aref*dia*(0.0006*alpha-0.00007*dele-0.22202757*q*dia/(2*Vel));   
ydot(1)=(1/mass)*(Pow*cos(alpha)-CD-mass*g*sin(theta)); 
ydot(2)=(1/(mass*Vel))*Pow*sin(alpha)-CL*(1/(mass*Vel))+g*cos(theta)*(1/Vel); 
ydot(3)=q-(1/(mass*Vel))*Pow*sin(alpha)-CL*(1/(mass*Vel))+g*cos(theta)*(1/Vel); 
ydot(4)=q; 
ydot(5)=Cm/(2*Inertia_yy); 
ydot(6)=Vel*sin(theta); 
endfunction 
 
//-------------------Trim Model of AHV----------M = 24 
Vel=24*sspeed; 
alpha=0/57.3; 
theta=0/57.3;   //-1.5708/57.3; //-1.3961606 
gama =0/57.3; 
q=0; 
 
function ydot=f(t, y) 
Vel  =  y(1);  
gama  =  y(2); 
alpha =  y(3); 
theta =  y(4);                      
 q  =  y(5); 
hft  =  y(6); 
dele = 0; 
PLA = 1.1; 
M   = Vel/sspeed; 
hft = h/0.3048 
//  Rocket Engine 
Pow3 = -5.43*10^4+0.664*hft+3.24*10^5*PLA+0.374*hft*PLA; 
Pow  = 4.44822*Pow3; 
CD=0.5*rho*(Vel*Vel)*Aref*(-0.0009*alpha*57.3-0.0007*dele);  
CL=0.5*rho*(Vel*Vel)*Aref*(0.0072*alpha*57.3-0.002*dele); 
Cm=0.5*rho*(Vel*Vel)*Aref*dia*(0.0022*alpha*57.3+0.0002*dele-0.30004623*q*dia/(2*Vel));   
 
ydot(1)=(1/mass)*(Pow*cos(alpha)-CD-mass*g*sin(theta)); 
ydot(2)=(1/(mass*Vel))*Pow*sin(alpha)-CL*(1/(mass*Vel))+g*cos(theta)*(1/Vel); 
ydot(3)=q-(1/(mass*Vel))*Pow*sin(alpha)-CL*(1/(mass*Vel))+g*cos(theta)*(1/Vel); 
ydot(4)=q; 
ydot(5)=Cm/(2*Inertia_yy); 
ydot(6)=Vel*sin(theta); 
endfunction 
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APPENDIX C 

Simulation of Trim Analysis of AHV with Control Surface 

Deflection 

The 3DOF longitudinal AHV model is obtained considering the Eqn. (4.7-4.13) 

and the states represented as 𝑥=[𝑀,𝛾,𝛼,𝜃,𝑞,h]′ and input as u=[ δe , δr]. The 

dynamic 3DOF longitudinal model simulation is carried out for the different 

Cases of Case 1, Case 3 and Case 4 as outlined in the Table 4.2 for different 

Mach number, M = 0.9, 6 and 10 for corresponding altitude. The dynamic 

simulation is carried out for trim condition and variable control surface 

deflection considering the elevator deflection and rudder deflection, δe and δr, 

for the Cases 1, 3 and 4 shown in the Table 4.2 and magnitude of PLA is 

considered as incremental value between 0.1 to 1 for all cases. The aerodynamic 

coefficients with their derivatives from Table C.1 are used in the simulation for 

the different Cases 1, 3 and 4, and their dynamic simulation is given in Fig. C.1-

C.4, Fig C.5- C.8 and Fig C.9- C.12 respectively. 

 

Table C.1 – Mach Number with aerodynamic derivatives 

Mach No. 0.9 6 10 

𝐶௅ഀ
 0.0252 0.0147 0.0132 

   𝐶௅ഃ೐
 -0.0032 -0.0006 0.001 

𝐶஽ഀ
 0.00005 0.0013 0.0008 

𝐶஽ഃ೐
 0.00006 -0.0006 -0.0004 

𝐶௠ഀ
 -0.0052 -0.0011 -0.0004 

𝐶௠ഃ೐
 0.0024 -0.000005 -0.0003 

𝐶஽ഃೝ
 0.000094533 0.00001787 0.00001787 

𝐶௠ഃೝ
 0.0000579 0.0001092 0.0001092 
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Fig. C.1 - Dynamic Simulation Case 1 for M = 0.9, δe= 1o and δr=0o 

 

Fig. C.2 - Dynamic Simulation Case 1 for M = 0.9, δe= 0o and δr=1o 
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Fig. C.3 - Dynamic Simulation Case 1 for M = 0.9, δe= 1o and δr=1o 

 

Fig. C.4 - Dynamic Simulation Case 1 for M = 0.9, δe= -1o and δr=1o 
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Fig. C.5 - Dynamic Simulation Case 3 for M = 6, δe= 1o and δr=0o 

 

Fig. C.6 - Dynamic Simulation Case 3 for M = 6, δe= 0o and δr=1o 
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Fig. C.7 - Dynamic Simulation Case 3 for M = 6, δe= 1o and δr=1o 

 

Fig. C.8 - Dynamic Simulation Case 3 for M = 6, δe= -1o and δr=1o 
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Fig. C.9 - Dynamic Simulation Case 4 for M = 10, δe= 1o and δr=0o 

 

Fig. C.9 - Dynamic Simulation Case 4 for M = 10, δe= 0o and δr=1o 
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Fig. C.9 - Dynamic Simulation Case 4 for M = 10, δe= 1o and δr=1o 

 

Fig. C.9 - Dynamic Simulation Case 4 for M = 10, δe= -1o and δr=1o 
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APPENDIX D 

AUTO-07p Program for 3DOF AHV ODE 

The program to evaluate the ODE of AHV model is given below for the different 

Cases from Table 3.3 and Table 4.1. 

!-------------------------M=0.9-------------------------- 
SUBROUTINE FUNC(NDIM,U,ICP,PAR,IJAC,F,DFDU,DFDP) 
DOUBLE PRECISION Vel, gama, alpha, theta, q, dele, mass, 
g, Iyy, dia, Aref, hft, h 
DOUBLE PRECISION rho0, rho1, rho, sspeed, Powlbf, Pow, 
CD, CL, Cm  
!  Vel   = U(1) 
!  alpha = U(2) 
!  theta = U(3) 
!  q     = U(4) 
   alpha = U(1) 
   theta = U(2) 
   q     = U(3) 
!  gama  = U(4) 
     
  dele  = PAR(1) 
  mass=136080 
  g=9.81                            
  Iyy=5000000 
  dia=25 
  Aref=350 
  hft=10000 
  h=hft*0.3048          
  rho0=0.002377      
  rho1=rho0*((1-6.875*(0.000001)*hft)**4.2561)  
  rho=rho1*515.379;   
  sspeed=sqrt(1.4*287*(288.15-6.5*(h/1000))) 
  Vel=0.9*sspeed 
!  Powlbf=0.3*(299000-10*hft+0.000133*(hft*hft)-
0.000000000648*(hft**3)+3750*((Vel/sspeed)**3)) 
!  Pow=4.44822*Powlbf 
CD=0.5*rho*(Vel*Vel)*Aref*(0.00005*alpha*57.3+0.00006*del
e) 
  CL=0.5*rho*(Vel*Vel)*Aref*(0.0252*alpha*57.3-
0.0032*dele) 
  Cm=0.5*rho*(Vel*Vel)*Aref*dia*(-
0.0052*alpha*57.3+0.0024*dele-1.31255*q*dia/(2*Vel)) 
  Pow=CD 
!  F(1)=(1/mass)*(Pow*cos(alpha*57.3)-CD-
mass*g*sin(theta*57.3)) 
!  F(2)=q-(1/(mass*Vel))*Pow*sin(alpha*57.3)-
CL*(1/(mass*Vel))+g*cos(theta*57.3)*(1/Vel) 
!  F(3)=q 
!  F(4)=Cm/(2*Iyy) 
!  F(1)=q-(1/(mass*Vel))*Pow*sin(alpha)-
CL*(1/(mass*Vel))+g*cos(theta)*(1/Vel) 
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  F(1)=(1/(mass*Vel))*Pow*sin(alpha)-
CL*(1/(mass*Vel))+g*cos(theta)*(1/Vel) 
  F(2)=q 
  F(3)=Cm/(2*Iyy) 
!  F(4)=(1/(mass*Vel))*Pow*sin(alpha)-
CL*(1/(mass*Vel))+g*cos(theta)*(1/Vel) 
 
END SUBROUTINE FUNC 
 
SUBROUTINE STPNT(NDIM,U,PAR,T) 
  PAR(1) = 0.0d0 
! Initialize the solution 
!  U(1) = 295.521150d0 
!  U(2) = 0.0d0/57.3 
!  U(3) = -1.57080d0 
!  U(4) = 0.0d0 
   U(1) = 1.569d0 
   U(2) = -1.569d0 
   U(3) = 0.0d0 
!  U(4) = 1.569d0 
END SUBROUTINE STPNT 
!-------------------------------------------------------- 
“ 
parnames = {1:'dele'} 
unames = {1:'alpha', 2:'theta', 3:'q'} 
NDIM=   3, IPS =   1, IRS =   0, ILP =   1 
ICP =  ['dele'] 
NTST=   5, NCOL=   4, IAD =   3, ISP =   2, ISW = 1, 
IPLT= 0, NBC= 0, NINT= 0 
NMX=  200, NPR=   20, MXBF=   0, IID =   2, ITMX= 8, 
ITNW= 5, NWTN= 3, JAC= 0 
EPSL= 1e-07, EPSU = 1e-07, EPSS =0.0001 
DS  =  0.01, DSMIN= 0.005, DSMAX=   0.1, IADS=   1 
NPAR = 1, THL =  {}, THU =  {} 
UZSTOP = {'dele': [-20.0, 20.0]} “ 

!-------------------------M=4---------------------------

SUBROUTINE FUNC(NDIM,U,ICP,PAR,IJAC,F,DFDU,DFDP) 

DOUBLE PRECISION Vel, alpha, theta, q, dele, mass, g, 
Iyy, dia, Aref, hft, h, rho0, rho1, rho, sspeed, Powlbf, 
Pow, CD, CL, Cm 
!  Vel   = U(1) 
!  alpha = U(2) 
!  theta = U(3) 
!  q     = U(4) 
   alpha = U(1) 
   theta = U(2) 
   q     = U(3) 
     
  dele  = PAR(1) 
  mass=136080 
  g=9.81                            
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  Iyy=5000000 
  dia=25 
  Aref=350 
  hft=50000 
  h=hft*0.3048          
  rho0=0.002377      
  rho1=rho0*((1-6.875*(0.000001)*hft)**4.2561)  
  rho=rho1*515.379;   
  sspeed=sqrt(1.4*287*(288.15-6.5*(h/1000))) 
  Vel=4*sspeed 
!  Powlbf=0.3*(299000-10*hft+0.000133*(hft*hft)-
0.000000000648*(hft**3)+3750*((Vel/sspeed)**3)) 
!  Pow=4.44822*Powlbf 
  CD=0.5*rho*(Vel*Vel)*Aref*(-0.0009*alpha*57.3-
0.0039*dele) 
  
CL=0.5*rho*(Vel*Vel)*Aref*(0.0134*alpha*57.3+0.005*dele) 
Cm=0.5*rho*(Vel*Vel)*Aref*dia*(0.0007*alpha*57.3+0.0006*d
ele-0.480870631*q*dia/(2*Vel)) 
  Pow=CD 
!  F(1)=(1/mass)*(Pow*cos(alpha*57.3)-CD-
mass*g*sin(theta*57.3)) 
!  F(2)=q-(1/(mass*Vel))*Pow*sin(alpha*57.3)-
CL*(1/(mass*Vel))+g*cos(theta*57.3)*(1/Vel) 
!  F(3)=q 
!  F(4)=Cm/(2*Iyy) 
  F(1)=q-(1/(mass*Vel))*Pow*sin(alpha)-
CL*(1/(mass*Vel))+g*cos(theta)*(1/Vel) 
  F(2)=q 
  F(3)=Cm/(2*Iyy) 
END SUBROUTINE FUNC 
 
SUBROUTINE STPNT(NDIM,U,PAR,T) 
! Initialize the equation parameters 
   PAR(1) = 0.0d0 
! Initialize the solution 
!  U(1) = 295.521150d0 
!  U(2) = 0.0d0/57.3 
!  U(3) = -1.50d0/57.3 
!  U(4) = 0.0d0 
   U(1) = 0.0d0 
   U(2) = -1.57080d0 
   U(3) = 0.0d0 
END SUBROUTINE STPNT 
!--------------------------M=6--------------------------- 
SUBROUTINE FUNC(NDIM,U,ICP,PAR,IJAC,F,DFDU,DFDP) 
DOUBLE PRECISION Vel, alpha, theta, q, dele, mass, g, 
Iyy, dia, Aref, hft, h, rho0, rho1, rho, sspeed, Powlbf, 
Pow, CD, CL, Cm  
!  Vel   = U(1) 
!  alpha = U(2) 
!  theta = U(3) 
!  q     = U(4) 
   alpha = U(1) 
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   theta = U(2) 
   q     = U(3) 
     
  dele  = PAR(1) 
  mass=136080 
  g=9.81                            
  Iyy=5000000 
  dia=25 
  Aref=350 
  hft=65000 
  h=hft*0.3048          
  rho0=0.002377      
  rho1=rho0*((1-6.875*(0.000001)*hft)**4.2561)  
  rho=rho1*515.379;   
  sspeed=sqrt(1.4*287*(288.15-6.5*(h/1000))) 
  Vel=6*sspeed 
!  Powlbf=0.3*(299000-10*hft+0.000133*(hft*hft)-
0.000000000648*(hft**3)+3750*((Vel/sspeed)**3)) 
!  Pow=4.44822*Powlbf 
  CD=0.5*rho*(Vel*Vel)*Aref*(0.0013*alpha*57.3-
0.0006*dele) 
  CL=0.5*rho*(Vel*Vel)*Aref*(0.0147*alpha*57.3-
0.0006*dele) 
  Cm=0.5*rho*(Vel*Vel)*Aref*dia*(-0.0011*alpha*57.3-
0.000005*dele-0.32726331*q*dia/(2*Vel)) 
  Pow=CD 
!  F(1)=(1/mass)*(Pow*cos(alpha)-CD-mass*g*sin(theta)) 
!  F(2)=q-(1/(mass*Vel))*Pow*sin(alpha)-
CL*(1/(mass*Vel))+g*cos(theta)*(1/Vel) 
!  F(3)=q 
!  F(4)=Cm/(2*Iyy) 
  F(1)=q-(1/(mass*Vel))*Pow*sin(alpha)-
CL*(1/(mass*Vel))+g*cos(theta)*(1/Vel) 
  F(2)=q 
  F(3)=Cm/(2*Iyy) 
END SUBROUTINE FUNC 
!-------------------------------------------------------- 
SUBROUTINE STPNT(NDIM,U,PAR,T) 
! Initialize the equation parameters 
  PAR(1) = 0.0d0 
! Initialize the solution 
!  U(1) = 295.521150d0 
!  U(2) = 0.0d0/57.3 
!  U(3) = -1.50d0/57.3 
!  U(4) = 0.0d0 
   U(1) = 0.0d0 
   U(2) = -1.57080d0 
   U(3) = 0.0d0 
END SUBROUTINE STPNT 
!------------------------M=10---------------------------- 
SUBROUTINE FUNC(NDIM,U,ICP,PAR,IJAC,F,DFDU,DFDP) 
DOUBLE PRECISION Vel, alpha, theta, q, dele, mass, g, 
Iyy, dia, Aref, hft, h, rho0, rho1, rho, sspeed, Powlbf, 
Pow, CD, CL, Cm  
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!  Vel   = U(1) 
!  alpha = U(2) 
!  theta = U(3) 
!  q     = U(4) 
   alpha = U(1) 
   theta = U(2) 
   q     = U(3) 
     
  dele  = PAR(1) 
  mass=136080 
  g=9.81                            
  Iyy=5000000 
  dia=25 
  Aref=350 
  hft=100000 
  h=hft*0.3048          
  rho0=0.002377      
  rho1=rho0*((1-6.875*(0.000001)*hft)**4.2561)  
  rho=rho1*515.379;   
  sspeed=sqrt(1.4*287*(288.15-6.5*(h/1000))) 
  Vel=10*sspeed 
!  Powlbf=0.3*(299000-10*hft+0.000133*(hft*hft)-
0.000000000648*(hft**3)+3750*((Vel/sspeed)**3)) 
!  Pow=4.44822*Powlbf 
  CD=0.5*rho*(Vel*Vel)*Aref*(0.0008*alpha-0.0004*dele) 
  CL=0.5*rho*(Vel*Vel)*Aref*(0.0132*alpha+0.001*dele) 
  Cm=0.5*rho*(Vel*Vel)*Aref*dia*(-0.0004*alpha-
0.0003*dele-0.24736507*q*dia/(2*Vel)) 
  Pow=CD 
!  F(1)=(1/mass)*(Pow*cos(alpha*57.3)-CD-
mass*g*sin(theta*57.3)) 
!  F(2)=q-(1/(mass*Vel))*Pow*sin(alpha*57.3)-
CL*(1/(mass*Vel))+g*cos(theta*57.3)*(1/Vel) 
!  F(3)=q 
!  F(4)=Cm/(2*Iyy) 
  F(1)=q-(1/(mass*Vel))*Pow*sin(alpha)-
CL*(1/(mass*Vel))+g*cos(theta)*(1/Vel) 
  F(2)=q 
  F(3)=Cm/(2*Iyy) 
END SUBROUTINE FUNC 
 
SUBROUTINE STPNT(NDIM,U,PAR,T) 
! Initialize the equation parameters 
   PAR(1) = 0.0d0 
! Initialize the solution 
!  U(1) = 295.521150d0 
!  U(2) = 0.0d0/57.3 
!  U(3) = -1.50d0/57.3 
!  U(4) = 0.0d0 
   U(1) = 0.0d0 
   U(2) = -1.57080d0 
   U(3) = 0.0d0 
END SUBROUTINE STPNT 
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!------------------------M=15---------------------------- 
SUBROUTINE FUNC(NDIM,U,ICP,PAR,IJAC,F,DFDU,DFDP) 
DOUBLE PRECISION Vel, alpha, theta, q, dele, mass, g, 
Iyy, dia, Aref, hft, h, rho0, rho1, rho, sspeed, Powlbf, 
Pow, CD, CL, Cm  
!  Vel   = U(1) 
!  alpha = U(2) 
!  theta = U(3) 
!  q     = U(4) 
   alpha = U(1) 
   theta = U(2) 
   q     = U(3) 
     
  dele  = PAR(1) 
  mass=136080 
  g=9.81                            
  Iyy=5000000 
  dia=25 
  Aref=350 
  hft=100000 
  h=hft*0.3048          
  rho0=0.002377      
  rho1=rho0*((1-6.875*(0.000001)*hft)**4.2561)  
  rho=rho1*515.379;   
  sspeed=sqrt(1.4*287*(288.15-6.5*(h/1000))) 
  Vel=15*sspeed 
!  Powlbf=0.3*(299000-10*hft+0.000133*(hft*hft)-
0.000000000648*(hft**3)+3750*((Vel/sspeed)**3)) 
!  Pow=4.44822*Powlbf 
  CD=0.5*rho*(Vel*Vel)*Aref*(0.0002*alpha-0.0005*dele) 
  CL=0.5*rho*(Vel*Vel)*Aref*(0.0115*alpha+0.0002*dele) 
  Cm=0.5*rho*(Vel*Vel)*Aref*dia*(0.0006*alpha-
0.00007*dele-0.22202757*q*dia/(2*Vel)) 
  Pow=CD 
!  F(1)=(1/mass)*(Pow*cos(alpha*57.3)-CD-
mass*g*sin(theta*57.3)) 
!  F(2)=q-(1/(mass*Vel))*Pow*sin(alpha*57.3)-
CL*(1/(mass*Vel))+g*cos(theta*57.3)*(1/Vel) 
!  F(3)=q 
!  F(4)=Cm/(2*Iyy) 
  F(1)=q-(1/(mass*Vel))*Pow*sin(alpha)-
CL*(1/(mass*Vel))+g*cos(theta)*(1/Vel) 
  F(2)=q 
  F(3)=Cm/(2*Iyy) 
END SUBROUTINE FUNC 
 
SUBROUTINE STPNT(NDIM,U,PAR,T) 
! Initialize the equation parameters 
   PAR(1) = 0.0d0 
! Initialize the solution 
!  U(1) = 295.521150d0 
!  U(2) = 0.0d0/57.3 
!  U(3) = -1.50d0/57.3 
!  U(4) = 0.0d0 
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   U(1) = 0.0d0 
   U(2) = -1.57080d0 
   U(3) = 0.0d0 
END SUBROUTINE STPNT 
!--------------------------M=24-------------------------- 
SUBROUTINE FUNC(NDIM,U,ICP,PAR,IJAC,F,DFDU,DFDP) 
“ IMPLICIT NONE 
  INTEGER, INTENT(IN) :: NDIM, IJAC, ICP(*) 
  DOUBLE PRECISION, INTENT(IN) :: U(NDIM), PAR(*) 
  DOUBLE PRECISION, INTENT(OUT) :: F(NDIM) 
  DOUBLE PRECISION, INTENT(INOUT) ::  
DFDU(NDIM,NDIM),DFDP(NDIM,*)” 
  DOUBLE PRECISION Vel, alpha, theta, q, dele, mass, g, 
Iyy, dia, Aref, hft, h, rho0, rho1, rho, sspeed, Powlbf, 
Pow, CD, CL, Cm  
!  Vel   = U(1) 
!  alpha = U(2) 
!  theta = U(3) 
!  q     = U(4) 
   alpha = U(1) 
   theta = U(2) 
   q     = U(3) 
   
  dele  = PAR(1) 
  mass=136080 
  g=9.81                            
  Iyy=5000000 
  dia=25 
  Aref=350 
  hft=100000 
  h=hft*0.3048          
  rho0=0.002377      
  rho1=rho0*((1-6.875*(0.000001)*hft)**4.2561)  
  rho=rho1*515.379;   
  sspeed=sqrt(1.4*287*(288.15-6.5*(h/1000))) 
  Vel=24*sspeed 
!  Powlbf=0.3*(299000-10*hft+0.000133*(hft*hft)-
0.000000000648*(hft**3)+3750*((Vel/sspeed)**3)) 
!  Pow=4.44822*Powlbf 
  CD=0.5*rho*(Vel*Vel)*Aref*(-0.0009*alpha*57.3-
0.0007*dele) 
  CL=0.5*rho*(Vel*Vel)*Aref*(0.0072*alpha*57.3-
0.002*dele) 
Cm=0.5*rho*(Vel*Vel)*Aref*dia*(0.0022*alpha*57.3+0.0002*d
ele-0.30004623*q*dia/(2*Vel)) 
  Pow=CD 
!  F(1)=(1/mass)*(Pow*cos(alpha*57.3)-CD-
mass*g*sin(theta*57.3)) 
!  F(2)=q-(1/(mass*Vel))*Pow*sin(alpha*57.3)-
CL*(1/(mass*Vel))+g*cos(theta*57.3)*(1/Vel) 
!  F(3)=q 
!  F(4)=Cm/(2*Iyy) 
  F(1)=q-(1/(mass*Vel))*Pow*sin(alpha)-
CL*(1/(mass*Vel))+g*cos(theta)*(1/Vel) 
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  F(2)=q 
  F(3)=Cm/(2*Iyy) 
END SUBROUTINE FUNC 
 
SUBROUTINE STPNT(NDIM,U,PAR,T) 
! Initialize the equation parameters 
   PAR(1) = 0.0d0 
! Initialize the solution 
!  U(1) = 295.521150d0 
!  U(2) = 0.0d0/57.3 
!  U(3) = -1.50d0/57.3 
!  U(4) = 0.0d0 
   U(1) = 0.0d0 
   U(2) = -1.57080d0 
   U(3) = 0.0d0 
END SUBROUTINE STPNT 
!-------------------------------------------------------- 
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