Name:

Enrolment No:

UPES End Semester Examination, May 2024

Course: Deep Learning (Neural Network) Program: B.Tech(CSE-All) Course Code: CSAI3015P

Semester: VI Time : 03 hrs. Max. Marks: 100

Instructions: Answer all the questions.

	SECTION A (5Qx4M=20Marks)		
S. No.		Marks	СО
Q 1	Describe deep learning's role in solving unsupervised learning tasks.	4	CO1
Q 2	Discuss the benefits and drawbacks of single layer and multi-layer perceptron.	4	CO2
Q 3	Identify the following activation functions and discuss one application where this activation function is suitable?	4	CO3
Q 4	Explain the purpose of cross validation in machine learning.	4	CO4
Q 5	State the exploding gradient problem. Identify the areas this problem is found.	4	CO2
	SECTION B		1
	(4Qx10M= 40 Marks)		1
Q 6	Identify the problems associated with Recurrent Neural Network (RNN). State how these problems are rectified in Long Short-Term Memory.	10	CO3
Q 7	Implement AND function using Mc. Culloch and Pitts neural network model.	10	CO1
Q 8	Demonstrate image captioning using Deep learning models. Support with suitable example.	10	CO2

Q 9	Critically comment on various data augmentation techniques. Why data augmentation is important in deep learning?			
	OR Compare Hebbian learning and Memory-based learning with their	10	CO1	
	mathematical expression.			
	SECTION-C			
(2Qx20M=40 Marks)				
Q 10	Design a suitable Deep Learning model for named entity recognition task. Provide any two applications in detail where named entity recognition task is important.	20	CO3	
Q 11	 An imaging technique that is frequently used in medicine to diagnose a variety of illnesses and ailments is magnetic resonance imaging (MRI). However, radiologists may find it difficult and time-consuming to interpret MRI pictures. The interpretation of medical images, such as MRI scans, can be automated with the use of Convolutional Neural Networks (CNNs). Investigate how the CNN architecture utilizes to classify MRI images. Argue the reasoning behind selecting CNN architecture. Investigate any changes or adjustments made to the architecture to meet the needs of MRI image classification. OR Investigate the working of speech recognition system using LSTM model. Critically judge the LSTM's role in generating natural language responses in speech recognition systems.	20	CO4	