Name:		ES		
Enrolme	ent No:	UNIVERSITY OF TOMORROW		
	UPFS			
	End Semester Examination, May 2024			
Course:Digital Signal ProcessingSem			nester: 6	
Program: B.Tech (CSE+ All)		Time: 03 hrs.	Time: 03 hrs.	
Course	Course Code: CSEG3042P Max. N		Marks: 100	
Instruct •] • (•]	tions: Electronic gadgets are not allowed during the examination except sci Carrying any material related to the subject of examination and bag the examination. Exchange of material is prohibited.	entific calculato s are prohibited	ors. I during	
	SECTION A (5Qx4M=20Marks)			
S. No.		Marks	СО	
Q 1	Find the linear and circular convolution of the following sequences:	2+2	CO1	
02	x[n] = [1, 0, -0.5, -1] and h[n] = [1, -1, -0.5].		001	
Q2	Find the <i>z</i> -transform of the signal, $x[n] = n^{-}u[n]$.	4	CO1	
Q3	Find 4-point DFT of the sequence, $x[n] = \cos\left(\frac{n\pi}{4}\right)$	4	CO1	
Q4	Explain up-sampling and down sampling with an example.	4	CO1	
Q5	Detail the applications of Multi rate system?	4	CO1	
	SECTION B			
06	(4QX10M= 40 Marks)			
Qυ	y[n] - y[n-1] = x[n] - x[n-5].	10	CO2	
Q7	 a) Write expressions for DFT and IDFT of a sequence of length N b) Find the inverse FFT of X[k] = [10, -2 + j2, 4, -2 - j2]. 	. 3+7	CO2	
Q8	The desired frequency response of a low pass filter is π			
	$\Big _{H(a^{i\omega})} - \Big(1; \qquad \frac{-\pi}{2} \le \omega \le \frac{\pi}{2}\Big)$	10		
	$\int_{-\pi}^{\pi} d(e^{-\beta}) = \int_{0}^{-\beta} 0; \qquad \frac{\pi}{2} \le \omega \le \pi$	10		
	Determine $h_d[n]$ for window length $M = 7$ using rectangular window.			

Q9	Obtain the cascade and parallel realization structures for the system y[n] = 0.5 y[n-1] + 0.25y[n-2] + x[n] + x[n-1]. (OR) Draw and explain the poly-phase implementation of interpolator with an example.	10	CO3		
SECTION-C (2Qx20M=40 Marks)					
Q10	 a) Write the DIT-FFT algorithm to compute 8-poin FFT of a sequence. b) Find the DFT of the sequence x(n) = {8,8,8,0,1,4,2,3} using DIF FFT. 	8+8+4	CO4		
Q11	 a) For the following discrete time signals, determine whether the system is linear, shift invariant, causal and stable. (i) y[n] = x[n + 7] (ii) y[n] = x³[n] b) For the analog transfer function H_a(s) = 2/((s+1)(s+2)). Determine its digital equivalent using impulse invariance method taking T = 1sec. 	8+12	CO4		
	(OK)				
	An LTI system is characterized by the difference equation y(n) = 0.68y(n-1) + 0.5x(n). The input signal $x(n)$ has a range of -5V to $+5V$, represented by $8 - bits$. Find the quantization step size, variance of the error signal and variance of the quantization noise at the output.	20	CO4		