Name:

Enrolment No:

UPES End Semester Examination, May 2024

Course: Formal Languages and Automata Theory Program: B.Tech CSE all specializations Course Code: CSEG 2035_3

Semester: IV Time : 03 hrs. Max. Marks: 100

Instructions: Provide sufficient explanation for every answer.

	SECTION A			
	(5Qx4M=20Marks) Attempt any five questions			
S. No.		Marks	СО	
Q 1	Show that the halting problem of a turing machine is undecidable.	4	CO4	
Q2	Design a CFG to generate the language $L=\{0^n1^n2^m3^m \mid n,m\geq 0\}$.	4	CO2	
Q3	Convert the CFG G({S,A,B}, {0,1},P,S) with its production set P as $S \rightarrow AAA 1B$ $A \rightarrow 0A B$ $B \rightarrow \varepsilon$ to CNF	4	CO2	
Q4	Design a CFG to generate the language $L=\{a^nb^nc^m n,m\geq 0\}$.	4	CO3	
Q5	Design a Mealy machine to subtract two binary numbers of the form $X_1X_2X_3X_k$ and $Y_1Y_2Y_3Y_k$. Assume that X and Y contain the same number of bits and the leftmost bits are zeros.	4	CO1	
Q6	If two languages L_1 and L_2 are recursive then prove that their union $L_1 U$ L_2 is also recursive.	4	CO2	
SECTION B				
(4Qx10M= 40 Marks) Attempt any four questions				
Q 7	Design a PDA to accept the language $L=\{0^n1^{n+2} \mid n \ge 1\}$. Justify that the string '00011111' is accepted by null store. OR Design a PDA to accept the language $L=\{ww^R w \epsilon(a,b)^+\}$. Justify that the string 'ababbaba' is accepted by null store.	10	CO3	
Q8	Prove that the language $L = \{a^p p \text{ is prime}\}$ is not a CFL.	10	CO2	
Q9	Design a minimum DFA that accepts even no of 0's and even no of 1's, where $\sum = \{0,1\}$. Find out the equivalent regular expression from that DFA.	10	C01	

Q10	Construct an NFA with null moves to accept the set of all strings over $\{0,1\}$ containing an even number of 0's or exactly two 1's. Convert that NFA with null moves into equivalent DFA.	5+5	C01	
Q11	Find the regular expression corresponding to the given DFA:	10	CO2	
SECTION-C (20x20M-40 Marks)				
Q 12	Design a Turing Machine to compute the multiplication of two positive integers. OR Design a Turing machine to divide a positive integer by 3 and to compute the quotient and the remainder.	20	CO4	
Q13	The production system of a CFG, is given below: $S \rightarrow ABC \mid AaA$ $A \rightarrow Aa \mid BaC \mid aaa \mid B$ $B \rightarrow bBb \mid a \mid D$ $C \rightarrow CA \mid AC$ $D \rightarrow \varepsilon$ Create an equivalent CFG G ₁ (V ₁ , {a,b}, P ₁ , S) in GNF.	20	CO3	