Name:

Q 1

Q 2

Q 3

Q4

Q 5

Q 6

Enrolment No:

UPES End Semester Examination, May 2024 **Course: Design and Analysis of Algorithms** Semester: IV **Program: BCA (AIML & CSF)** Time : 03 hrs. **Course Code: CSBC-2030** Max. Marks: 100 **Instructions: Attempt all questions. SECTION A** (5Qx4M=20Marks) S. No. Marks CO Discuss about the different algorithmic design techniques? 4 **CO1** Discuss the best case and worst-case analysis of quick sort? 4 **CO2** Explain Huffman coding with an example? 4 CO3 What are some real-world applications of counting sort? 4 **CO4** Discuss 0/1 knapsack problem? 4 **CO4 SECTION B** (4Qx10M= 40 Marks) What is the shortest path from A to D using the Bellman-Ford algorithm? Consider the following graph: $A \rightarrow B (cost 5)$ $A \rightarrow C (cost 3)$ 10 **CO3** $B \to C (cost 2)$ $C \rightarrow D (cost 1)$

	D -> .	A (cost -1)				
Q 7	A thief into his values. item wi	enters a hous bag. There a What items s th him?	10	CO3		
	Item	Weight	Value			
	1	5	30			

	2	10	40							
	3	15	45							
	4	22	77							
	5	25	90							
Q 8	Can yo	u design a ba								
	that is more efficient than the standard algorithm? What is the best-case time 10									
	complexity of a backtracking algorithm for solving the N-queens problem?									
Q 9	Sort the	e following li	10	CO4						
	535, 75	7		10	0.04					
SECTION-C										
(2Qx20M=40 Marks)										
Q 10	Provid	e a solution								
	bound	method. Dis	20	CO5						
	in deta	il.								
Q 11	Explain	n the algorit	hm for th	e below mentioned problem:						
	Suppos	se we are gi								
	and fin	ish times as	20	CO4						
	$T = \{(1, $	2), (2,4), (
	maxim	um number	of activit	ies that can be performed, assuming that only						
	one single activity can be done at a time.									