Name:

Enrolment No:

UPES End Semester Examination, May 2024

Course: Machine Learning Program: B.Tech. CSE (AIML) Course Code: CSAI2001 Semester: IV Time : 03 hrs. Max. Marks: 100

Instructions: Attempt all Questions, Usage of Scientific calculator is allowed

SECTION A (5Qx4M=20Marks)								
S. No.		Marks	СО					
Q 1	What is Sigmoid function? Explain its role in logistic regression.	4	2					
Q 2	Consider a Multi-Layer Perceptron with the following architecture: Input layer: 10 neurons. Hidden layer 1: 20 neurons. Hidden layer 2: 15 neurons. Output layer: 5 neurons. Calculate the total number of parameters used in this MLP	4	3					
Q 3	List the key stages and their role in the information retrieval process.	4	5					
Q 4	Define centroid and dissimilarity measure in the context of cluster analysis. How are these statistical measures used in clustering algorithms?	4	4					
Q 5	State the difference between bagging and boosting ensemble techniques.	4	3					
SECTION B								
(4Qx10M= 40 Marks)								
Q 6	Discuss the different tasks involved in data preprocessing.	10	1					
Q 7	Provide a step-by-step explanation of the K-means clustering algorithm, including how the initial centroids are chosen and how clusters are updated in each iteration.	10	4					
Q 8	Consider the following data set.	10	3					

				1	1			
		Confident	Studied	Sick	Result			
		Yes	No	No	Fail			
		Yes	No	Yes	Pass			
		No	Yes	Yes	Fail	_		
		No	Yes	No	Pass	-		
		Yes	Yes	Yes	Pass	-		
	Find or No will	ut whether the Fail or Pass us	e object with sing Naïve Ba	attribute Conf yesian classific	ident = Yes, cation.	Sick =		
Q 9	How do we represent documents in information retrieval systems?							
	Discuss different document representation techniques and their							
	advantages.							
	Explair	the following	terms in conte	ext of Support	Vector Machin	ne:	10	5
	a)	Soft and Hard	Margin				10	5
	b)	Kernel						
	c) Hyper-plane d) Marginal Distance							
	a) Marginal Distance e) Support Vectors							
	0)		15	SECTION-	C			
			(20	Qx20M=40 M	(arks)			
Q 10	Explain the steps of Adaptive Boosting algorithm under the following conditions: (i) Use Gini impurity while selecting stump. (ii) Show one complete iteration of the algorithm using the below							
		mentioned	dataset.					
		Chest Pain	Blocked Arteries	Patient Weight	Heart Disease			
		Yes	Yes	205	Yes			
		No	Yes	180	Yes			
		Yes	No	210	Yes	_	20	3
		Yes	Yes	167	Yes	_	20	5
		No	Yes	156	No	_		
		No	Yes	125	No	_		
	-	Yes	No	168	No	_		
		Yes	Yes	172	No			
	OR							
	Use the below mentioned data set to explain the steps of Gradient Boosting algorithm for regression problem under the following conditions:							

	 (i) Can restrict up to 4 leaf nodes. (ii) Create two trees after the first single leaf tree): 							
		Height	Favourite Color	Gender	Weight (Need to be predicted)			
		1.6	Blue	Male	88			
		1.6	Green	Female	76			
		1.5	Blue	Female	56			
		1.8	Red	Male	73			
		1.5	Green	Male	77			
		1.4	Blue	Female	57			
Q 11	Discuss the different types of regression models including simple linear regression, multiple linear regression, polynomial regression, and					20	-	
	logistic regression. Provide mathematical formulations for each regression model, outlining the assumptions, advantages, and limitations					20	1	
	of eac	ch.						