Name:

Enrolment No:

UPES End Semester Examination, May 2024

Course: Mathematical Sciences II Program: B. Sc CS Course Code: MATH1067 Semester: II Time: 03 hrs. Max. Marks: 100

Instructions: Attempt all questions

SECTION A (50x4M-20Marks)				
S. No.		Marks	СО	
Q 1	Test the analyticity of the function $f(z) = z z $.	4	CO2	
Q 2	Test the convergence of the series $\sum_{n=1}^{\infty} \frac{(n-\log n)^n}{2^n \cdot n^n}$.	4	CO2	
Q 3	Find the Laplace transform of $\frac{\cos 2t \sin t}{e^t}$.	4	CO3	
Q 4	Expand $f(x) = x$ as a half-range sine series in the interval $0 < x < 2$.	4	CO3	
Q 5	Classify the following partial differential equations: (i) $4 \frac{\partial^2 u}{\partial x^2} + 4 \frac{\partial^2 u}{\partial x \partial t} + \frac{\partial^2 u}{\partial t^2} = 0,$ (ii) $x^2 \frac{\partial^2 u}{\partial t^2} + 3 \frac{\partial^2 u}{\partial x \partial t} + x \frac{\partial^2 u}{\partial x^2} + 17 \frac{\partial u}{\partial t} = 100u.$	4	CO4	
SECTION B (4Qx10M= 40 Marks)				
Q 6	Expand $f(z) = \frac{(z+1)}{(z-3)(z-4)}$ as a Taylor's series about $z = 2$.	10	CO2	
Q 7	Using convolution theorem to find the inverse Laplace transform of $\frac{1}{(p^2+a^2)(p^2+b^2)}$.	10	CO3	
Q 8	Evaluate $\int_0^{1+i} (x - y + ix^2) dz$ along the line from $z = 0$ to $z = 1 + i$.	10	CO2	
Q 9	Find the Fourier series of $f(x) = \begin{cases} 0, & -\pi < x < 0 \\ \sin x, & 0 < x < \pi \end{cases}$		CO3	
	OR	10		
	Solve $\frac{dy}{dt} + y = \cos 2t$, $y(0) = 1$ using Laplace transformation.			

SECTION-C (2Qx20M=40 Marks)				
Q 10A	Use Picard's method to solve $\frac{dy}{dx} = 1 + xy$ with $x_0 = 0, y_0 = 0$ up to third approximation	10	CO1	
Q 10B	Apply Newton-Raphson method to find a root of $x^4 - x - 10 = 0$, correct to three decimal places.	10	CO1	
Q 11A	Solve $\frac{\partial^2 z}{\partial x^2} + \frac{\partial^2 z}{\partial x \partial y} + \frac{\partial^2 z}{\partial y^2} = e^{x+2y} + x^3.$			
	OR	10	CO4	
	Solve $\frac{\partial^2 z}{\partial x^2} - \frac{\partial^2 z}{\partial x \partial y} - \frac{\partial z}{\partial y} - 1 = \cos(x + 2y) + e^y$.			
Q 11B	Apply method of separation of variable to solve $\frac{\partial u}{\partial x} = 4 \frac{\partial u}{\partial y}$, given that			
	$u(0,y)=8e^{-3y}.$			
	OR			
	Solve the one-dimensional heat equation $\frac{\partial u}{\partial t} = k \frac{\partial^2 u}{\partial x^2}$ for the conduction of heat along a rod without radiation subject to the following conditions:	10	CO4	
	(i) u is finite when $t \to \infty$. (ii) $u = 0$ when $x = \ell$ for all values of t .			
	(iii) $\frac{\partial u}{\partial x} = 0$ when $x = 0$ for all values of t .			
	(iv) $u = u_0$ when $t = 0$ for $0 < x < 1$.			
