Name:

Enrolment No:

UPES

End Semester Examination, May 2024

Course: Physics for Computer Engineers
Program: BTech SOCS (all batches)
Semester: II
Time: 03 hours
Course Code: PHYS 1032
Max. Marks: 100

Instructions:

- All questions are compulsory (Q. No. 6 and Q. No. 10 has an internal choice).
- All highlighted representations are vector quantities.
- Scientific calculators can be used for calculations.

SECTION A (5Qx4M=20Marks)

S. No.		Marks	СО		
Q 1.	Explain the construction process involved in developing a hologram with a neat diagram.	4	CO1		
Q 2.	Prove that electric field intensity is negative gradient of potential. State the significance of negative sign.	4	CO2		
Q 3.	Write Maxwell's equations in integral forms with their physical significance.	4	CO3		
Q 4.	Write the continuity equation for charge conservation and its form for steady state.	4	CO3		
Q 5.	Explain the de-Broglie hypothesis and write an expression for the wavelength of an electron accelerated with potential V.	4	CO4		
SECTION B (4Qx10M= 40 Marks)					
Q 6.	Discuss the characteristic properties of a LASER beam. Derive the relationship between Einstein coefficients for spontaneous and stimulated emission and explain the outcome. OR Explain the propagation mechanism in an optical fiber. The velocity of a signal in the core of the optical fiber is 10 ⁸ m/s and the critical angle is 55°. Determine the numerical aperture of the fiber.	10	CO1		
Q 7.	Determine the divergence and curl of the following vector fields (a) $\mathbf{P} = x^2 yz \mathbf{a}_x + xz \mathbf{a}_z$ (b) $\mathbf{Q} = \rho \sin \varphi \mathbf{a}_\rho + \rho 2z \mathbf{a}_\varphi + z \cos \varphi \mathbf{a}_z$.	10	CO2		
Q 8.	Explain the Biot-Savart law and calculate the magnetic field intensity of a straight current-carrying conductor of finite length.	10	CO3		

Q 9.	What do you understand by phase velocity (v_p) and group velocity (v_g) and prove the following $v_g = v_p - \lambda \frac{dv_p}{d\lambda}$ Discuss the physical significance of v_g for dispersive and non-dispersive media.	10	CO4			
SECTION-C						
(2Qx20M=40 Marks)						
Q 10.	(a) Explain the physical significance of a wave function. Derive Schrodinger's time-dependent wave equation.					
	(b) Normalize the wave function: $\Psi(x) = A e^{ikx}$, over the region $-a \le x \le a$ OR					
	(c) Discuss the Compton Effect with the help of a proper diagram. Show that in Compton Scattering, the wavelength of the scattered photon is given by $\lambda' = \lambda + \frac{h}{m_0 c} (1 - cos\theta), \text{ where } \lambda \text{ is the wavelength of the incident}$	15 + 5	CO4			
	 photon, θ and φ are the angles of scattered photon and recoiled electron, respectively, and m₀ is the rest mass of an electron. (d) By using Heisenberg's uncertainty principle, prove that the electron cannot exist in the nucleus of an atom. 					
Q 11.	(a) What do you understand by Fermi energy? Draw the Fermi energy level diagram for p and n-type semiconductors.					
	(b) Explain Hall-effect. Derive the expression for the Hall coefficient and carrier concentration in the case of semiconducting materials.	5+10+5	CO5			
	(c) A Ge p-n junction at 300 K has the following parameters $N_D = 5 \times 10^{18}$ / cm ³ , $N_A = 6 \times 10^{16}$ / cm ³ , $n_i = 1.5 \times 10^{10}$ / cm ³ . Calculate the minority electron concentration in the P-region.					

Constant	Standard Values		
Planck's Constant (h)	6.63×10^{-34} Joule – sec		
Permittivity of free space (ε_0)	8.85×10^{-12} Farad/meter		
Velocity of light (<i>c</i>)	3×10^8 m/sec		
Boltzmann constant (k_B)	$1.38 \times 10^{-23} \text{JK}^{-1}$		
Rest mass of an Electron (m_o)	$9.11 \times 10^{-31} \text{ kg}$		
Mass of the proton (m_p)	1.67×10^{-27} kg		
Charge of an electron (e)	$1.6 \times 10^{-19} \mathrm{C}$		
Del operator in cylindrical coordinate system	$ \overrightarrow{\nabla} = \frac{\partial}{\partial \rho} \hat{a}_{\rho} + \frac{1}{\rho} \frac{\partial}{\partial \varphi} \hat{a}_{\varphi} + \frac{\partial}{\partial z} \hat{a}_{z} $		