Name: Enrolme	ent No:	UPES UNIVERSITY OF TOMORROW		
Course: Progran Course Instruct	End Semester Ex Advanced Engineering Mathemat n: B. Tech. CSE Code: MATH1065 tions: Attempt all questions from Sections A	UPES xamination, May 2024 tics-II Semest Time Max. M A, B, and C. Questions 6 and 11 have inte	ter : II : 03 Marks: 10 ernal choi	hrs. 00 ces.
	SEC (50x4N	CTION A A=20Marks)		
S. No.	(* 2		Marks	СО
Q 1	The values of a function $f(x)$ at four discrete $x = 0$ f(x) = -12 If the function $f(x)$ may be represented where $R(x)$ is a polynomial of degree 2, formula and a is a real constant. Find a and	rete points are as follows: 1 3 4 0 6 12 by a polynomial $f(x) = (x - a)R(x)$, , obtained by Lagrange's interpolation ad the polynomial $R(x)$.	4	CO1
Q 2	Expand $f(z) = \frac{1}{z(z-2)}$ as a Laurent's series	es for the region $ z > 2$.	4	CO2
Q 3	Discuss the nature of the singularity of the	e function $f(z) = \frac{\sin(z-a)}{(z-a)}$ at $z = a$.	4	CO2
Q 4	Compute the Laplace transform of the fund	ction $f(t) = t^{\frac{3}{2}} - 2^t$.	4	CO4
Q 5	Classify the partial differential equation $\frac{\partial}{\partial t}$	$\frac{\partial^2 u}{\partial x^2} = 5 \frac{\partial u}{\partial x} + \frac{\partial u}{\partial y}.$	4	CO5
	SEC	CTION B		
Q 6	(4Qx10N) A curve $y = f(x)$ is drawn to pass through	the points given by the following table:		
	x11.522y22.42.72Find the area bounded by the curve $y = f$ the x-axis using Simpson's $(\frac{1}{3})^{rd}$ rule.	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	10	CO1

	OR		
	Upon completing the construction of his house Dr. Joshi discovers that 100 square feet of plywood scrap and 80 square feet of white-pine scrap are in usable form for the construction of tables and bookcases. It takes 16 square feet of plywood and 16 square feet of white-pine to make a table; 12 square feet of plywood and 16 square feet of white-pine are required to construct a bookcase. By selling the finished products to a local furniture store, Dr. Joshi can realize a profit of Rs. 25 on each table and Rs. 20 on each bookcase. How many he most profitably use the leftover wood? Use Simplex method to solve the problem. <i>Problem Formulation:</i> $Max. z = 25x_1 + 20x_2$ such that $16x_1 + 12x_2 \le 100$ $8x_1 + 16x_2 \le 80$ and $x_1, x_2 \ge 0$. Here, x_1, x_2 and z denotes number of tables, number of book cases and total profit		
	respectively.		
Q 7	Evaluate the integral $\int_C \frac{f(z)}{g(z)} dz$, where $f(z) = e^{ez}$, $g(z) = z - ei$ and $C: z-2 + z+2 = 6$. (Here $i = \sqrt{-1}$)	10	CO2
Q 8	Find the singular points of the following differential equation and classify them. $x^{3}(x-2)\frac{d^{2}y}{dx^{2}} + x^{3}\frac{dy}{dx} + 6y = 0.$	10	CO3
Q 9	State second shifting theorem. Express the following function $f(t)$ in terms of Unit step function and hence find its Laplace transform. $f(t) = \begin{cases} 2, & 0 < t < \pi \\ 0, & \pi < t < 2\pi \\ \sin t, & t > 2\pi \end{cases}$	10	CO4
	SECTION-C	<u> </u>	1
0.10	(i) A voltage Ee^{-at} is applied at $t = 0$ to a circuit of inductance L and resistance		
	(i) A voltage Let it's applied at $t = 0$ to a circuit of inductance L and resistance R . The equation governing the current flow in LR circuit is given by $L\frac{dI}{dt} + RI = Ee^{-at}$. Using Laplace transform, show that the current at any time t is given by $\frac{E}{R-aL} \left(e^{-at} - e^{-Rt}/L \right)$. (ii) Find the Fourier series expansion of the function $f(x) = \sqrt{1 - \cos x}$ in the interval $(0, 2\pi)$.	10+10	CO4
Q 11	If a string of length <i>l</i> is initially at rest in equilibrium position and each of its points is given the velocity $\left(\frac{\partial y}{\partial t}\right)_{t=0} = b \sin^3\left(\frac{\pi x}{l}\right)$ where <i>b</i> is a constant, find the displacement $y(x, t)$.	20	CO5

OR	
A tightly stretched string with fixed end points $x = 0$ and $x = l$ is initially in a position given by $y = y_0 \sin^3\left(\frac{\pi x}{l}\right)$. If it is released from rest from this position then find the displacement $y(x, t)$.	