Name:

Enrolment No:

UPES

End Semester Examination, May 2024

Course: Exploratory Data Analysis

Program: MCA

Course Code: CSDA7008P

Semester: II

Time: 03 hrs.

Max. Marks: 100

Instructions: Section A (Attempt All Questions), Section B (Attempt Four Questions), Section C

(Attempt Two Questions)

SECTION A (5Qx4M=20Marks)

	(5QATVI—20VIAIR5)		
S. No.		Marks	CO
Q 1	Describe the process of handling missing values in a dataset.	4	CO1
Q 2	Create a histogram and interpret its distribution for a given dataset.	4	CO1
Q 3	Discuss the importance of feature engineering in data preparation.	4	CO2
Q 4	Illustrate the use of bar plots and scatter plots with an example.	4	CO2
Q 5	How do heatmaps assist in understanding data correlations?	4	CO2
	SECTION B		1
	(4Qx10M=40 Marks)		
Q 6	Discuss the steps involved in data cleaning and preparation, providing examples of techniques used at each step.	10	CO4
Q 7	Evaluate the use of advanced visualization techniques like 3D plots and interactive visualizations in representing complex data.	10	CO3
Q 8	Implement LDA on a given dataset and discuss how it differs from PCA in terms of feature extraction.	10	CO3
Q 9	Create a geospatial visualization using a provided dataset and explain the insights you can derive from it.	10	CO4
Q 10	Define seasonality in time-series data and its significance.	10	CO3
	SECTION-C (2Qx20M=40 Marks)		
Q 11	Given a dataset, perform a complete EDA and present your findings with appropriate visualizations.	20	CO5
Q 12	Analyze the role of dimensionality reduction in multivariate analysis and its impact on data visualization. Write a python script for applying PCA in any dataset of your choice.	20	CO4

Q 13	Explain the concept of distribution analysis and how it aids in		
	understanding the underlying patterns in data. Include examples of	20	CO5
	different types of plots used.		