Name:

Enrolment No:

UPES End Semester Examination, May 2024

Course:

Program: MCA

Course Code: CSDA7007P

Data analysis and visualization

Semester: II Time : 03 hrs. Max. Marks: 100

SECTION A								
(5Qx4M=20Marks)								
S. No.		Marks	CO					
Q 1	Differentiate between supervised and unsupervised learning.	4	CO3					
Q 2	Explain the concept of maximum margin classifier. Give one example.	4	CO3					
Q 3	Explain the advantages and disadvantages of supervised learning.	4	CO3					
Q 4	State the difference between parametric and non-parametric hypothesis testing.	4	CO2					
Q 5	Define the following terms(1*4)i.Hyperplaneii.Support vectoriii.Kernaliv.Clustering	4	CO2, CO3					
SECTION B (40x10M= 40 Marks)								
Q 6	Define Machine Learning? Explain different types of learning strategy.	2+8=10	CO3					
Q 7	Define kernel? Explain different types of kernels used in SVM with its mathematical definition. Write the advantages and disadvantages of SVM. (2+5+3)	10	CO3					
Q 8	Write short note on: (Attempt any two)(2*5)(i) Z Test.(ii) T Test.(iii) K-Means algorithm(iv) Regression	10	CO2, CO3					
Q 9	The population of all verbal GRE scores are known to have a standard deviation of 8.5. The UW Psychology department hopes to receive applicants with a verbal GRE scores over 210. This year, the mean verbal GRE scores for the 42 applicants was 212.79. Using a value of α = 0.05 is this new mean significantly greater than the desired mean of 210? (critical value of $z_{0.05}$ is 1.64)	10	CO2, CO5					

			<u>م</u>			
	From the data availab					
	FIOIII the data availab	From the data available, it is observed that 400 out of 850 customers				
	purchased the grocerte	$\frac{1}{1}$ $\frac{1}{1}$ $\frac{1}{1}$ $\frac{1}{1}$	in we say that most of the customers			
	are moving towards or	111100 snoppin	g even for groceries?			
	(z critical values = (-1))	96, +1.96))	CECTION C			
			SECTION-C (2Qx20M=40 Marks)			
O 10	Write short note on (an	ny four)				
	i. Applications of	f dimensiona	lity reduction			
	ii. Feature selection	on				
	iii. Principal Com	vsis (PCA)				
	iv Applications of	f clustering				
	v Data pre-proce					
	vi Exploratory da					
	vi. Exploratory da)r				
	Write the KNN algorit	ou uso K NN for large datasets?				
	We have date from the					
	two attributes to alogai	20				
	two altributes to classi		CO3, CO4,			
	Here is four training sa					
	V1 - Asid Dunshility (second	X2 = Strength	V - Classification	20	CO5	
	XI = Acia Durability (second	s) (kg/square mete	Y = Classification			
		(ng) oq uur e mere	-)			
	7	7	Bad			
	7	4	Bad			
	3	4	Good			
	1	4	Good			
	Now the factory produ					
	with X1=3, X2=7 with					
	the classification of the					

Q 11	i.	Three types of fertilizers are used on three groups of plants for 5 weeks. We want to check if there is a difference in the mean growth of each group. Using the data given below apply a one way ANOVA test at 0.05 significant level.							
		Fertilizer 1	1	Fertilizer 2	Fertilizer	3			
		6	ŧ	3	13				
		8		12	9				
		4	Ş	9	11				
		5		11	8				
		3	(6	7				
		4	8	3	12				
		Or					20	CO2, CO5	
	ii.	What is an ANG ANOVA Test? E: way ANOVA. The following da students on 3 diff	OVA ' xplain ta repr erent c	Test in the conc esents th lays (Mc	Statistics? ept of one le study ho onday, Tue	How to way ANC	Perform an DVA and two y four lnesday)		
		Days	A 2	B 3	C	D 5	-		
		Tuesdav	4	4	6	6	-		
		Wednesday	6	5	8	8	_		
		a) Test whether the study hours of the different students are							
		same?	.1	1 1	1:00	. 1	0		
		b) Lest whether $(F_{0.05} (c_{2})=4.76 \text{ an})$	the stu	dy hours	s on differ (4)	ent days a	re same?		