Name:

Enrolment No:

UPES End Semester Examination, May 2024

Course: Computational Tools: Atomistic Simulation Techniques Semester: VIII Program: BSc (H) Physics Course Code: PHYS4032P

 Time
 : 03 hrs.

 Max. Marks: 100

Instructions: All questions are compulsory

SECTION A (50x4M=20Marks)

S. No.		Marks	СО	
Q 1	State variational method.	4	CO1	
Q 2	Write a function that accepts two numbers and returns their sum.	4	CO3	
Q 3	Draw a flow chart to plot PDOS (projected density of states)	4	CO2	
Q 4	Show that the operator -ihd/dx is a linear operator.	4	CO1	
Q 5	What are the different types of operators in Python?	4	CO3	
SECTION B				
(4Qx10M= 40 Marks)				
Q 6	Write a Python program using a loop to print first N numbers divisible by five.	10	CO3	
Q 7	Write Kohn-Sham equations of DFT implementation.	10	CO2	
Q 8	Mention four reserve keywords in Python. Give an example of assigning a variable value to another.	10	CO3	
Q 9	Derive the expression for energy of a particle in a box (one-dimensional infinite square well potential).	10	C01	
SECTION-C (2Qx20M=40 Marks)				
Q 10	a) State and prove Hellman Feynman principle.b) Using this principle prove that the average potential energy of a	10		
	one-dimensional linear harmonic oscillator is equal to its average kinetic energy.	10 C	CO1	
Q 11	a) What do you understand by LDA and GGA approximations?	10	CO2	
	b) Write the Hamiltonian of a many-body problem and define each	10		
	term involved in it.		CO2	

Or a) Given the structure of any material, mention steps in computing, visualization and plotting the electronic bandstructure using DFT methodology as implemented in the Quantum Espresso software package with the help of an example. b) Explain exchange-correlation in DFT.	15	CO2
	5	CO2