Name:

Enrolment No:

UPES End Semester Examination, May 2024 **Course: Electronics** Semester: VIII Time : 03 hrs. **Program: B.Sc. (Chemistry by Research) Course Code: ECEG4046** Max. Marks: 100 Instructions: (i) All questions are compulsory. (ii) Use of Scientific calculator is allowed. SECTION A (5Qx4M=20Marks) S. No. CO Marks An a.c. voltage of peak value of 20V is connected in series with a Si Q1 diode and load resistance of 500 Ω . If the forward resistance of diode is 5 **CO1** 10 Ω calculate: (i) peak input voltage, (ii) peak output voltage. For the given circuit; determine I_c and V_{CB} . Q 2 5 **CO2** $2 k\Omega$ VEE Q 3 5 **CO3** $Y = [D + (\overline{A + B}) C]$ Derive and examine the Boolean expression for given circuit. An EM wave is represented by $V = 5(1+0.6\cos 6280 t) \sin 211x10^4 t$ **O**4 volts. What is the maximum and minimum amplitude of wave? What 5 **CO4** frequency components are contained in the modulated wave? **SECTION B** (4Qx10M= 40 Marks) Construct a block diagram of a filter circuit and write its uses? Evaluate Q 5 10 **CO1** the ripple factors for: (i) Choke filter and (ii) Capacitor filter. Q 6 A transistor is connected in common emitter mode as shown in figure. The collector circuit supply is of 8V and the voltage drop across 10 **CO2** resistance Rc is 0.5 V. The value of Rc is given in figure. If $\alpha = 0.96$ determine: (i) collector-emitter voltage and (ii) base-current.

	I_C I_B V_{CE} $R_C = 800 \Omega$ $0.5 V$ I_E V_{BB} $V_{CC} = 8 V$		
Q 7	Illustrate the encoder and decoder circuits with block diagrams. Perform logical operations, by explaining the principle, working and applications of (i) encoders and (ii) decoders.	10	CO3
Q 8	Derive the mathematical expression for the amplitude modulation of a wave and, hence, define the upper sideband and lower side band frequency.	10	CO4
SECTION-C (20x20M-40 Morta)			
Q 9	Calculate the sum of any two and three binary digits for an operation of Binary adders. Illustrate the principle and working of: (i) half and (ii) full adders.	20	CO3
Q 10	What is the phenomenon of modulation? Assume an EM wave and apply the theory of modulation and, hence, estimate modulation-index of the EM wave.	20	CO2