Name:

Enrolment No:

UPES End Semester Examination, May 2024

Course: Artificial Intelligence and Machine Learning Program: B.Tech Mechatronics Course Code: CSAI4001P Semester: VIII Time : 03 hrs. Max. Marks: 100

Instructions: Instructions: All questions are compulsory. The question paper consists of 11 questions divided into 3 sections A, B and C. Section A comprises 5 questions of 4 marks each, Section B comprises 4 questions of 10 marks each and Section C comprises 2 questions of 20 marks each.

SECTION A (5Qx4M=20Marks)

S. No.		Marks	CO
Q 1	Discuss the similarity & differences between two types of Supervised Machine Learning – namely Regression & Classification	4	CO1
Q 2	Explain feature engineering? Give example.	4	CO1
Q 3	Explain overfitting (High Variance) & underfitting (High bias)? How to avoid overfitting?	4	CO1
Q 4	Describe a neuron in a Neural Network along with the two mathematical operations that are done in a neuron.	4	CO1
Q 5	Discuss the major differences between Prim's and Kruskal's Algorithm for MST (Minimum Spanning Tree)	4	CO2
	SECTION B		
	(4Qx10M= 40 Marks)		
Q 6	Describe the mathematical formulation of gradient descent for Linear Regression.	10	CO2
Q 7	Consider a hypothetical Neural Network with just one neuron with linear activation. $\vec{x} \longrightarrow \vec{a}$ The operation in the neuron is just Activation a=wx+b The cost function is defined be mean square error as	10	CO3

	$J = \frac{1}{2}(a - y)^2$ Assuming w=2 propagation as	2,b=8, and a sin well as back prop	ngle data point of pagation steps throu	x = -2, y = 2 show the forward gha computational graph.	ard	
Q 8	Determine the algorithm.	Minimum Spanr	$\frac{8}{c}$ $\frac{7}{c}$ $\frac{6}{1}$ $\frac{9}{c}$	lowing graph using Kruska	al's 10	CO2
Q 9	Consider the for node for decis feature. All fea	ollowing data and sion tree by calc tures (x1 to x3)	d decide upon the foculating information are binary categoric	eature for splitting at the ron n gain associated with ea al. There are 2 classes.	oot ach	
	X1	X2	X3	Y (class)		
	1	0	1	0		
	0	1	1	1	10	CO3
	1	0	0	0		
	1	1	1	1		
	0	0	0	1		
	1	1	0	1		
	0	0	1	0		
			SECTION-C		1	1
			(2Qx20M=40 Ma	rks)		
Q 10	Describe the G for minimizati small/large and Descent. How	radient Descent on of a function d (b) the cost fun to choose a good	Method and associa a. Discuss the effect action being conver- learning rate?	ted mathematical formulati ct of (a) learning rate bei x or non-convex on Gradie	ion ing ent 20	CO2

Indi	vidual		Va	ariable	1		Variab	le 2			
1			1			,	1				
2			1.5	5			2				
3			3	3		2	4				
4			5	5			7				
5			3.5	5		-	5				
6			4.5	5		-	5				
7		3.5	3.5		4	4.5					
Calcu	late (a)	Precisi	on (b) r	ecall (c) f1-Sco	ore for t	he give	n confu	sion Ma	atrix.	
0 -	869.000	4.000	20.000	21.000	6.000	0.000	70.000	0.000	10.000	0.000	
н -	0.000	980.000	1.000	15.000	0.000	1.000	3.000	0.000	0.000	0.000	
~ -	12.000	5.000	818.000	7.000	97.000	0.000	57.000	0.000	4.000	0.000	20
m -	24.000	8.000	8.000	905.000	25.000	0.000	28.000	0.000	2.000	0.000	
Values 4	3.000	2.000	72.000	17.000	862.000	0.000	44.000	0.000	0.000	0.000	
Actual 5	0.000	0.000	2.000	1.000	1.000	921.000	0.000	47.000	6.000	22.000	
φ-	118.000	3.000	89.000	27.000	82.000	1.000	670.000	0.000	10.000	0.000	
7	0.000	0.000	0.000	0.000	0.000	25.000	0.000	947.000	0.000	28.000	
- 00	4.000	1.000	9.000	1.000	2.000	2.000	9.000	3.000	967.000	2.000	
	0.000	0.000	0.000	0.000	0.000	12.000	0.000	30.000	2.000	956.000	
თ -	0.000				and the second se						1