Name:

Enrolment No:

UPES End Semester Examination, May 2024

Course: Integral Equations & Calculus of Variations Program: B.Sc. Physics Course Code: MATH4019

Semester: VIII Time: 03 hrs. Max. Marks: 100

Instructions: Read all the below mentioned instructions carefully and follow them strictly: 1) Mention Roll No. at the top of the question paper.

2) ATTEMPT ALL THE PARTS OF A QUESTION AT ONE PLACE ONLY.

SECTION A (50x4M=20Marks)

	(SQX4M=20Marks)				
S. No.		Marks	CO		
Q 1	Convert the following initial value problem into an integral equation: $\frac{d^2y}{dx^2} + A(x)\frac{dy}{dx} + B(x)y = f(x) \text{ with } y(a) = y_0, y'(a) = y'_0.$	4	CO1		
Q 2	Show that the initial value problem corresponding to the Volterra integral equation $y(x) = 1 + \int_0^x y(t)dt$ is $\frac{dy}{dx} - y = 0$, $y(0) = 1$.	4	CO1		
Q 3	State Hilber Schimdt theorem.	4	CO1		
Q 4	Prove that if the kernel of an integral equation is symmetric then all its iterated kernels are also symmetric.	4	CO2		
Q 5	Find the extremal of the functional $\int_{1}^{3} y(3x - y) dx$ that satisfy the boundary conditions $y(3) = \frac{9}{2}$, $y(1) = 1$.	4	CO3		
SECTION B					
(4Qx10M= 40 Marks)					
Q 6	Find the solution of the following integral equation $y(x) = x^2 + 1 + \frac{3}{2} \int_{-1}^{1} (xt + x^2t^2)y(t)dt$ using Hilbert-Schmidt theorem,	10	CO2		
Q 7	Suppose a particle is sliding from a point (x_1, y_1) to another point (x_2, y_2) , if its rate of motion $v\left(=\frac{dx}{dt}\right)$ is equal to x. Find the path on which the particle will take minimum time.	10	CO3		
Q 8	Prove that the shortest distance between two fixed points in a plane is straight line.	10	CO4		

Q 9	Prove that the resolvent kernel $R(x, t, \lambda)$ satisfies the integral equation $R(x, t, \lambda) = K(x, t) + \lambda \int_{a}^{b} K(x, z)R(z, t, \lambda)dz$ where the Fredholm integral equation is given by $y(x) = f(x) + \lambda \int_{a}^{b} K(x, t)y(t)dt$, OR Find the eigenvalues and eigenfunctions of the homogeneous Fredholm integral equation of second kind: $y(x) = \lambda \int_{0}^{1} (2xt - x^{2})y(t)dt$.	10	CO2	
SECTION-C (2Qx20M=40 Marks)				
Q 10	Find the extremal of the functional $I[y(x)] = \int_0^1 (1 + y''^2) dx$ that satisfy the conditions $y(0) = 0, y'(0) = 1, y(1) = 1, y'(1) = 1$.	20	CO3	
Q 11	Find the shortest distance between the circle $x^2 + y^2 = 4$ and a straight line $2x + y = 6$. OR Find the shortest distance between the parabola $y = x^2$ and the straight line $y = x - 5$.	20	CO4	