Name:

Enrolment No:

UPES End Semester Examination, May 2024

Course: Nanomagnetic Materials and Applications Program: BSc + Integrated MSc Course Code: PHYS 3044P Semester: II Time: 03 hours Max. Marks: 100

Instructions:

- All questions are compulsory (**Q. No. 6** and **Q. No. 10** has an internal choice).
- All highlighted representations are vector quantities.
- Scientific calculators can be used for calculations.

	SECTION A (5Qx4M=20Marks)		
S. No.		Marks	СО
Q 1.	Discuss the origin of nanomagnetic behavior.	4	CO1
Q 2.	Compare and contrast the magnetic behavior of small particles with that of bulk materials.	4	CO1
Q 3.	What is the Stoner-Wohlfarth model, and what does it propose about the behavior of magnetic materials?	4	CO1
Q 4.	For a different material, if χ is measured as 0.05 at 300 K, and E _a is 0.3 eV, calculate the pre-exponential factor (v).	4	CO1
Q 5.	How does the Giant Magnetoresistance (GMR) effect revolutionize data storage technology? Explain with examples.	4	CO2
	SECTION B (4Qx10M= 40 Marks)		
Q 6.	Discuss the concept of anisotropy in thin films, focusing on perpendicular and in-plane anisotropy. Provide examples and discuss their significance in material science and technological applications. OR Discuss the factors that contribute to the anisotropic behavior of electrical	10	CO2
07.	resistance in Anisotropic Magnetoresistance (AMR) materials.Evaluate the potential of superparamagnetic particles in biomedical applications, highlighting recent advancements and challenges.	10	CO1
Q 7. Q 8.	Discuss the principles of exchange bias and interlayer exchange coupling in thin films and multilayers.	10	CO2
Q 9.	Propose a combined experimental approach using both vibrating sample magnetometer (VSM) techniques to investigate the magnetic properties of a novel magnetic material, outlining the complementary information that each technique can provide and the experimental parameters to be considered.	10	CO2

	SECTION-C (2Qx20M=40 Marks)					
Q 10.	Discuss the advancements in magneto-transport phenomena, focusing on tunnel magnetoresistance (TMR) and its applications.A tunnel junction consists of two ferromagnetic layers separated by a thin insulating barrier. The junction has an area of 100 nm² and a barrier					
	thickness of 1 nm. The magnetization of one layer is fixed while the other layer can switch its magnetization direction.					
	Given that the resistance of the junction is 100Ω when the magnetization of the free layer is parallel to that of the fixed layer, and 150Ω when the magnetizations are antiparallel, calculate the tunnel magnetoresistance (TMR) of the junction.	20	CO2			
	OR					
	A sample of a semiconductor has a Hall coefficient of 3.2×10^{-9} m ³ /C. When a current of 20 mA is passed through it and a magnetic field of 0.5 T is applied perpendicular to the current, a Hall voltage of 2 mV is measured across the sample. Calculate the charge carrier density and the mobility of charge carriers in the material.					
Q 11.	 (a) Evaluate the prospects of magneto-transport phenomena in advancing nanomagnetism research. (b) Explain the operation of a Hall effect sensor and discuss its applications in automotive systems. 	20	CO2			

Constant	Standard Values
Planck's Constant (<i>h</i>)	6.63×10^{-34} Joule – sec
Permittivity of free space (ε_0)	8.85×10^{-12} Farad/meter
Velocity of light (<i>c</i>)	3×10^8 m/sec
Boltzmann constant (k_B)	$1.38 \times 10^{-23} \mathrm{JK^{-1}}$
Rest mass of an Electron (m_o)	9.11×10^{-31} kg
Mass of the proton (m_p)	1.67×10^{-27} kg
Charge of an electron (<i>e</i>)	$1.6 \times 10^{-19} \mathrm{C}$