Name:

Enrolment No:

UPES

End Semester Examination, May 2024

Course: Condensed Matter Physics II
Program: Int. BSc-MSc (Physics)
Course Code: PHYS 3036

Time: 03 hours Max. Marks: 100

Semester: VI

Instructions:

- All questions are compulsory (Q9 and Q11 have an internal choice).
- Scientific calculators can be used for calculations.

SECTION A $(5Q \times 4M = 20 \text{ Marks})$

S. No.		Marks	CO
Q1	What is Fermi liquid behavior? Give example.	4	CO1
Q2	Describe electron-phonon interaction by illustrating the emission and absorption of phonons.	4	CO1
Q3	What do you understand by molecular field theory in case of magnetism?	4	CO2
Q4	Illustrate Doniach phase diagram with schematics.	4	CO3
Q5	How will you differentiate between classical and quantum Hall effect?	4	CO5

SECTION B

(4Qx10M= 40 Marks)

Q6	What is occupation number? Explain benefit of occupation number representation over a Slater determinant? Write Slater determinant for a system of two particle systems.	10	CO1
Q7	What is field-induced metamagnetic transition? What is the origin on nuclear spins and discuss its contribution to the magnetization.	10	CO2

Q8	Elaborate integral quantum Hall effect with the help of a diagram. Make a comparison with the fractional Quantum Hall effect.	10	CO5
Q9	Elaborate crystal electric field splitting of free <i>d</i> -ions in octahedral and tetrahedral environments.	10	CO2
	OR		
	Discuss magnetic susceptibility of a single crystal with the help of a diagram for antiferromagnetic materials. Why is the susceptibility along the easy axis different from that along the hard axis?	10	
	SECTION-C		
	(2Qx20M=40 Marks)		
Q10	a) Describe the salient features of a topological insulator.	10	CO4
	b) Discuss Weyl semi-metal behavior on the basis of experimental observation.	10	
Q11	a) What do you understand by a quantum phase transition? Discuss the scaling behavior near a quantum critical point.	10	
	b) What is time reversal symmetry? How can it be applied to condensed matter physics?	10	
	OR		CO3
	a) What do you understand by parity transformation in condensed matter physics? What are pseudo-vectors and pseudo-scalars? Give examples.	10	
	b) Elaborate different aspects of heavy fermion and non-Fermi liquid systems.	10	