Name:

Enrolment No:

UPES End Semester Examination, May 2024

Course: Nuclear and Particle Physics Program: Int (BSc + MSc) Course Code: PHYS3035 Semester: VI Time : 03 hrs. Max. Marks: 100

Instructions: All questions are compulsory and question no 9 and 11 have internal choices

SECTION A (50x4M=20Marks)				
S. No.		Marks	СО	
Q 1	Briefly explain the mirror nuclei method for determining nuclear radius.	4	CO1	
Q.2	The contribution of surface energy per nucleon to the binding energy formula in liquid drop model is denoted by E_s , determine the ratio of the surface energy per nucleon for ${}^{27}_{13}Al$ to ${}^{64}_{30}Zn$,	4	CO1	
Q.3	Classify the different elementary particles based on their spins.	4	CO4	
Q.4	List the similarities of nucleus with a liquid drop.	4	CO2	
Q.5	Calculate the time required for 10% of a pure sample of $^{232}_{90}Th$ to disintegrate. T _{1/2} = 1.4 x 10 ¹⁰ years.	4	CO2	
SECTION B (4Qx10M= 40 Marks)				
Q.6	Binding Energy of a light nuclei (Z, A) in MeV is given by the approximate formula. $B(A, Z) \cong 16A - 20 A^{\frac{2}{3}} - \frac{3}{4} Z^2 A^{-\frac{1}{3}} + 30 \frac{(N-Z)^2}{A}$ N = A- Z is the neutron number, Determine the value of Z for most stable isobar for a given A. [Hint $\frac{\partial B}{\partial Z} = 0$]	10	CO2	
Q.7	Explain briefly the tunnel theory of alpha decay	10	CO2	
Q.8	Find the spin and Parity of the following nuclei based on Shell model. ${}_{2}^{3}He$, ${}_{10}^{20}Ne$, ${}_{13}^{27}Al$, ${}_{21}^{41}Sc$	10	CO1	
Q.9	Differentiate between the Direct and Compound nuclear reaction mechanism with examples.	10	CO1	

	Define attenuation and hence obtain expression for mass attenuation coefficient of gamma radiations.		CO1	
SECTION-C (2Ox20M=40 Marks)				
Q.10	a) Describe the phenomena of Compton scattering. Obtain an expression for Compton shift.	15	CO3	
	b) Explain the phenomena of pair annihilation.	05		
Q.11	Obtain an expression for threshold value for a nuclear reaction to occur. Assume the reaction to be of the type $a + A \rightarrow b + B$.	20		
	OR a) Discuss the different mechanisms by which charge particles interact with matter.	10	CO2	
	b) Determine the minimum energy that a photon should have for it to split an alpha particle into a tritium and a proton. (The masses of ${}_{2}^{4}He$, ${}_{1}^{3}H$ and ${}_{1}^{1}H$ are 4.0026 amu, 3.0161 amu and 1.0073 amu respectively and 1 amu \approx 938 MeV.	10	CO3	