Name:

Enrolment No:

UPES End Semester Examination, May, 2024

Course: Number Theory Program: Int. B.Sc. - M.Sc. Mathematics Course Code: MATH4006P Semester: 6th Time : 03 hrs. Max. Marks : 100

Instructions: Read all the below-mentioned instructions carefully and follow them strictly:1) Mention Roll No. at the top of the question paper.2) ATTEMPT ALL THE PARTS OF A QUESTION AT ONE PLACE ONLY.

SECTION A (50x4M=20Marks)

S. No.	Answer all the questions	Marks	СО	
Q 1	Find all possible solutions of the equation $x^2 \equiv 8 \pmod{17}$.	4	CO3	
Q 2	Let a, b, c be integers. If a divides bc and $(a, b) = 1$, then prove that a divides c .	4	CO1	
Q 3	For any odd prime p, prove that the number of quadratic residues and quadratic non-residues are equal in number under modulo p.	4	CO3	
Q 4	Find the value of $\left(\frac{13}{101}\right)$, notation has its usual meaning.	4	CO3	
Q 5	Evaluate the value of $2^{20} + 3^{30} + 4^{40} + 5^{50} + 6^{60} \pmod{7}$.	4	CO2	
	SECTION B			
(4Qx10M= 40 Marks)				
Q 6	Find the order of 2 and 8 in \mathbb{Z}_{27} , and state which one is the primitive root. Find the list of all elements that are primitive in \mathbb{Z}_{27} .	10	CO3	
Q 7	State Fermat's Litle Theorem. Prove that, for any $n = pq$ with distinct primes p and q with a is not divisible by p or by q , then $a^{(p-1)(q-1)} \equiv 1 \pmod{n}$. Hence evaluate $45^{6468} \pmod{6499}$.	10	CO2	
Q 8	Find all positive integers x such that $2^{2^{x}} + 2$ is divisible by 17.	10	CO2	
Q9	If u and v are relatively prime positive integers whose product uv is a perfect square. Then u and v are both perfect squares. OR	10	CO4	

	For any arithmetic function $f(n)$, is multiplicative iff its sum-function $S_f(n)$			
	is multiplicative, where $S_f(n)$ denote the sum of all the values of $f(n)$ at			
	different n.			
SECTION-C				
(2Qx20M=40 Marks)				
Q 10	Let <i>p</i> and <i>q</i> are distinct odd primes of the form $4k + 3$, then one of the congruences $x^2 \equiv p \pmod{q}$ and $x^2 \equiv q \pmod{p}$ is solvable and other is not. But if one of the prime is of the form $4k + 1$, then prove that both the congruences are solvable or both are not.	20	CO4	
Q 11	Let <i>a</i> and <i>b</i> be positive integers. If $(a, b) = 1$, then the number of positive integer n that cannot be written in the form of $ar + bs = n$, for some non- negative integers <i>r</i> , <i>s</i> equals $(a - 1) (b - 1)/2$. OR Let <i>p</i> be an odd prime, then prove that $\left(\frac{2}{p}\right) = (-1)^{(p^2-1)/8}$.	20	CO3	