Name:

Enrolment No:

UPES

End Semester Examination, May 2024

Programme Name: Integrated B.ScM.Sc. Mathematics Semester :				
Course Name	: Theory of Partial Differential Equations	Time : 03 hrs		
Course Code	: MATH 3050	Max. Marks: 100		
Nos. of page(s)	: 02			

Instructions: Attempt all questions.

SECTION A (5Qx4M=20Marks)

S. No.		Marks	CO	
Q1	Form a partial differential equation corresponding to the family of surfaces given by $z = f(x^2 - y^2)$, where f is an arbitrary function.	4	CO1	
Q2	Prove that the characteristic curves on xy -plane for the PDE $x^2u_{xx} - y^2u_{yy} = x^2y^2 + x; x > 0$ are straight lines through the origin.	4	CO1	
Q3	Describe the region in the lower half plane where the second order PDE: $y^3 u_{xx} - (x^2 - 1)u_{yy} = 0$ is hyperbolic.	4	CO2	
Q4	Find the D-Alembert's solution of the initial value problem: $u_{tt} = 4u_{xx}$, $t > 0, -\infty < x < \infty$ satisfying the conditions $u(x, 0) = x, u_t(x, 0) = 0.$	4	CO2	
Q5	Use direct integration to find the value $u(1,1)$ if $\frac{\partial u}{\partial x} = xe^x$ such that $u(0,y) = y$.	4	CO4	
SECTION B (4Qx10M= 40 Marks)				
Q 6	Solve the Cauchy problem $\frac{\partial u}{\partial x} - 2\frac{\partial u}{\partial y} = u - 1$ subject to the Cauchy data $u(ky, y) = 2y$ giving reasons for any restriction that must be placed on k.	10	CO1	
Q7	Find the solution of the IVP $u_t + 2u_x = 0$ with $u_t(x, 0) = x$. Prove that the solution is not unique.	10	CO2	
Q8	Find the solution of Dirichlet problem on the square $0 \le x \le 1, 0 \le y \le 1$: $u_{xx} + u_{yy} = 0$	10	CO3	

	with $u(0, y) = u(1, y) = 0$ for $0 \le y \le 1$			
	and $u(x, 0) = 0$ and $u(x, 1) = \cosh n\pi x$ for $0 \le x \le 1$			
Q9	Consider the heat equation defined on $x > 0$;			
	$u_t = u_{xx}$ for $x > 0, t > 0$			
	with $u(0,t) = 0$ for $t > 0$ and $u(x,0) = \begin{cases} 1 & \text{for } 0 \le x \le h \\ 0 & \text{for } x > h \end{cases}$			
	Find the solution $u(x, t)$.			
	OR	10	CO3	
	Derive the most general solution of wave equation on real axis:			
	$rac{1}{c^2}u_{tt} = u_{xx}$, $-\infty < x < \infty, t > 0$			
	such that $u(x,0) = f(x)$ and $\frac{\partial u}{\partial x}(x,0) = g(x)$			
SECTION-C				
010	(2Qx20M=40 Marks) Consider the wave equation with a forcing term $F(x) = \cos x$ as follows:			
QIO	$\frac{\partial^2 y}{\partial t^2} = \frac{\partial^2 y}{\partial x^2} + F(x) \text{for } 0 < x < 2\pi, t > 0$			
	$y(0,t) = y(2\pi,t) = 0$ for $t \ge 0$; $y(x,0) = \frac{\partial y}{\partial t}(x,0) = 0$ for $0 \le x \le 2\pi$	20	CO2	
	Using suitable transformation reduce it into homogeneous wave equation and hence find the solution $y(x, t)$.			
Q11	Solve the heat conduction problem:			
	$\frac{\partial u}{\partial t} = 4 \frac{\partial^2 u}{\partial x^2} \text{ for } 0 \le x \le \pi, t > 0$			
	$\frac{\partial u}{\partial x}(0,t) = 0, u(\pi,t) = 100^{\circ}C$ and $u(0,t) = 50^{\circ}C$			
	OR			
	Consider a thin rod of length 2π in which the temperature distribution $u(x, t)$ is	20	CO4	
	governed by the equation $\frac{\partial u}{\partial t} = 4 \frac{\partial^2 u}{\partial x^2}$. Find the temperature distribution function			
	u(x,t) if the left end of rod is perfectly insulated and the right end is at zero			
	temperature with the initial distribution given by $(r) = if 0 < r < \pi$			
	$u(x,0) = \begin{cases} x, & \text{if } 0 \le x \le n \\ 2\pi - x, & \text{if } \pi < x \le 2\pi \end{cases}$			