Name:

Enrolment No:

UPES

End Semester Examination, May 2024 ed B.Sc.-M.Sc. Mathematics

Programme Nan	ne: Integrated B.ScM.S
Course Name	: Topology
Course Code	: MATH 3048
Nos. of page(s)	: 02

Semester : VI Time : 03 hrs Max. Marks: 100

Instructions: Attempt all questions.

SECTION A (5Qx4M=20Marks)

S. No.		Marks	СО	
Q1	Suppose $S \subset \mathbb{R}^2$ is a set which is the union of an open triangle and its three vertices. Determine the number of connected components in <i>S</i> .	4	CO5	
Q2	Give an example of topological space which is T_1 but not T_2 . Give reasons for your choice.	4	CO5	
Q3	Determine whether the circle $S = \{(x, y) x^2 + y^2 = 1\}$ is homeomorphic to the interval [0,1] or not. Justify your answer.	4	CO4	
Q4	Suppose (M_1, τ_1) and (M_2, τ_2) are topological spaces such that $\tau_1 \neq \tau_2$. Describe explicitly the product topology $\tau_1 \times \tau_2$ on the cartesian product $M_1 \times M_2$.	4	CO4	
Q5	Suggest two topologies τ_1 and τ_2 on some set M such that the (M, τ_1) is separable but (M, τ_2) is not.	4	CO3	
SECTION B (40x10M= 40 Marks)				
Q 6	Prove that the space \mathbb{C}^n endowed with standard topology is connected.	10	CO5	
Q7	Consider the set of real numbers \mathbb{R} equipped with the standard topology. Is \mathbb{R} compact? Justify your answer by choosing a suitable base for the topology.	10	CO4	
Q8	Suppose (X, τ) is a topological space and $Y \subset X$. Prove that the restriction of τ on set <i>Y</i> defined as $\tau _Y = \{u \cap Y \mid u \in \tau\}$ is an induced topology on <i>Y</i> .	10	CO3	

Q9	If X and Y are topological spaces and let $X \sim Y$ mean that X and Y are homeomorphic. Show that this relation is an equivalence relation. OR Let X, Y and Z are topological spaces. If $f: X \to Y$ and $g: Y \to Z$ are continuous mappings, show that $gf: X \to Z$ is also continuous.	10	CO3
	SECTION-C (2Qx20M=40 Marks)		<u> </u>
Q10	 (a) Define uniform continuity of a function f: X → X in the metric space (X, d). If X = R and d(x, y) = x - y ; x, y ∈ R is the Euclidean metric defined on it then prove or disprove that f(x) = (x + 1)^{1/2024} is uniformly continuous on [-1,∞) ⊂ R. (b) Is the function f: R⁺ → R defined as f(x) = sin(¹/_x) uniformly continuous? Justify your answer by choosing appropriate sequences in R⁺ to check the criterion for uniform convergence. 	20	CO2
Q11	Prove that in a metric space (X, d) every closed sphere is a closed set. Also show that the union of an infinite class of closed sets is not necessarily closed. OR Let X be a complete metric space and let $\{F_n\}$ be a decreasing sequence of non- empty closed subsets of X such that $d(F_n) \to 0$. Prove that $F = \bigcup_{n=1}^{\infty} F_n$ contains exactly one point.	20	C01