Name:

Enrolment No:

UPES End Semester Examination, May 2024

Course: Advance Instrumental Analysis-I Semester: VI Program: Int. B.Sc. M.Sc. Chemistry Course Code: CHEM3035

Time: 03 hrs.Max. Marks: 100

Instructions:

- Write your name and enrolment no. at the top of the question paper.
- Do not write anything else on the question paper except your name and roll number.
- Attempt all the parts of a question at one place only.
- Schematic representations are highly encouraged during answering the questions.
- In Section B and C, there are separate internal options provided for questions 9 and 11 respectively. Please ensure that you answer either the main question or the internal options, but not a combination of both. Kindly avoid any mixing up of answers between the main question and the internal options.
- "CO" in the last column stands for course outcomes and it is for official use only.

SECTION A (5Qx4M=20Marks)				
S. No.		Marks	СО	
Q 1	A compound absorbs light at a wavelength of 450 nm with an absorbance (A) of 0.6 in a 1 cm cuvette. Calculate the molar absorptivity (ε) of the compound if its concentration is 0.02 M.	4	C01	
Q 2	Schematically represent the instrumentation and working principle of UV-Vis absorption spectroscopy.	4	CO 1	
Q 3	Predict, whether following nuclides will be stable or radioactive? ⁹ B ₅ , ²⁵ Mg ₁₂ , ²⁹ Si ₁₄ , ⁵⁷ Mn ₂₅	4	C01	
Q 4	Which one of the radioisotopes of manganese (⁵⁴ Mn, $t^{1/2} = 312$ d; ⁵⁶ Mn, $t^{1/2} = 2.56$ h) should be used as radiotracer for the determination of manganese in a steel sample in a chemical laboratory? Explain the reason.	4	CO1	
Q 5	State the practical applications of ESR spectroscopy in chemistry and biology.	4	CO 3	
SECTION B				
(4Qx10M= 40 Marks)				
Q 6	How do specific functional groups in molecules affect their UV-Vis absorption spectra? Provide examples of functional groups and describe the plausible electronic transitions responsible for their absorption properties.	10	CO1	

Q 7	Describe the basic principle of neutron activation analysis (NAA) and its	10	CO1	
Q 8	Correlate among the thin layer chromatography (TLC), column			
	chromatography, and high-performance liquid chromatography	10	CO2	
	techniques used for purification of organic molecules (with examples			
0.0	and schematic representation).			
Q 9	Differentiate between the NMR and ESR spectroscopic techniques. OR	10	CO3	
	Schematically represent the instrumentation details of both the NMR			
	and ESR spectroscopic techniques.			
SECTION-C				
	(2Qx20M=40 Marks)			
Q 10	Discuss the theory, separation modes, and applications of High-Performance Liquid Chromatography (HPLC) in detail. Compare the principles and applications of different separation modes, such as reverse-phase, normal- phase, and chiral HPLC.	20	CO2	
Q 11	State the fundamental principles underlying NMR spectroscopy, including the interaction of nuclei with an external magnetic field, nuclear spin, resonance absorption of electromagnetic radiation, chemical shift, and coupling. OR How does C-NMR spectroscopy function, and how does it differ from H- NMR spectroscopy? Additionally, what information can be obtained from C-NMR spectra, and what are its applications in determining the structure of organic compounds and identifying them?	20	CO3	