Name:

Enrolment No:

UPES End Semester Examination, May 2024

Course: Advanced Physical Chemistry Program: Int. B.Sc. M.Sc. Chemistry Course Code: CHEM3026 Semester: VI Time: 03 hrs. Max. Marks: 100

Instructions:

- Write your name and enrolment no. at the top of the question paper.
- Do not write anything else on the question paper except your name and roll number.
- Attempt all the parts of a question at one place only.
- CO1, CO2, CO3 & CO4 in the last column stand for course outcomes and are for official use only. **SECTION A**

(5Qx4M=20Marks)				
S. No.		Marks	СО	
Q 1	What are the gross selection rules of rotational, vibrational, and Raman spectroscopy?	4	CO1	
Q 2	What are the properties of a wavefunction? Not every function can be a wavefunction.	4	CO2	
Q 3	Given a classical observable (position, momentum, kinetic energy, total energy), write down the corresponding quantum operators.	4	CO1	
Q 4	The percent transmittance of 10^{-4} M solution of malachite green is 40 when measured at 620 nm in a cell of pathlength of 1 cm. Calculate the absorbance and molar extinction co-efficient.	4	CO3	
Q 5	What is radial probability density function? Draw radial probability distribution curve for 1s, 2s and 2p orbital of H atom.	4	CO1	
	SECTION B			
	(4Qx10M= 40 Marks)			
Q 6	 (a) Plot ψ_n(x) and ψ_n²(x) for a particle in a box (with infinite height walls) with n=1,2,3,4 for 0<x<l.< li=""> (b) Write the Schrödinger equation and energy expression of harmonic oscillator. </x<l.<>	5+5	CO3	
Q 7	 (a) Calculate the average momentum of a particle in vibrational state "v" which is described by wave function "ψ_v" (b) The energy of 1st excited state of 1D SHO is 400 cm⁻¹; what is the energy of the next higher energy level? 	5+5	CO2	
Q 8	(a) Discuss the classical mechanical picture of light-matter interaction phenomena.	5+5	CO2	

rotor. If $B = 25 \text{ cm}^{-1}$ give the rotational energy levels of this molecules $J=0, 1,2,3$.		
List the postulates of quantum mechanics and explain them. OR The vibration of ${}^{1}\text{H}{}^{35}\text{Cl}$ molecule can be considered as simple harmonic oscillation. The force constant is 400 Nm ⁻¹ . Calculate the fundamental vibration frequency and 1^{st} excited vibrational energy of this molecule in joules. (Given: Plank constant = 6.626×10^{-34} Js).	10	CO3
SECTION-C		
(2Qx20M=40 Marks)		
 (a) Show that the wavefunction ψ(x)=Ne^{ik} of the free particle is an eigenfunction of the linear momentum operator p̂. Find the average linear momentum for a particle in state ψ(x) = Ne^{ikx}. (b) (i) Draw an energy diagram indicating the origin of fundamental, first overtone, 2nd overtone and hot band in vibrational spectroscopy. (ii) Show the origin of the P, Q, and R branches in rovibrational spectroscopy. 	10+10	CO2
 (a) Derive thermodynamic master equations and criteria of spontaneity from thermodynamic square. (b) Explain the distinctions between Maxwell-Boltzmann, Bose-Einstein, and Fermi-Dirac statistics. OR (a) Explain one of the approximate theories in quantum mechanics, either (i) perturbation theory or (ii) variation theorem. (b) Discuss the principles of Debye-Huckel Theory 	10+10	CO4
	 molecules J= 0, 1,2,3. List the postulates of quantum mechanics and explain them. OR The vibration of ¹H³⁵Cl molecule can be considered as simple harmonic oscillation. The force constant is 400 Nm⁻¹. Calculate the fundamental vibration frequency and 1st excited vibrational energy of this molecule in joules. (Given: Plank constant = 6.626×10⁻³⁴ Js). SECTION-C (2Qx20M=40 Marks) (a) Show that the wavefunction ψ(x)=Ne^{ik} of the free particle is an eigenfunction of the linear momentum operator p̂. Find the average linear momentum for a particle in state ψ(x) = Ne^{ikx}. (b) (i) Draw an energy diagram indicating the origin of fundamental, first overtone, 2nd overtone and hot band in vibrational spectroscopy. (ii) Show the origin of the P, Q, and R branches in rovibrational spectroscopy. (a) Derive thermodynamic master equations and criteria of spontaneity from thermodynamic square. (b) Explain the distinctions between Maxwell-Boltzmann, Bose-Einstein, and Fermi-Dirac statistics. 	rotor. If B = 25 cm ⁻¹ give the rotational energy levels of this molecules J = 0, 1,2,3. List the postulates of quantum mechanics and explain them. OR The vibration of ¹ H ³⁵ Cl molecule can be considered as simple harmonic oscillation. The force constant is 400 Nm ⁻¹ . Calculate the fundamental vibration frequency and 1 st excited vibrational energy of this molecule in joules. (Given: Plank constant = 6.626×10 ⁻³⁴ Js). 10 SECTION-C (2Qx20M=40 Marks) (a) Show that the wavefunction $\psi(x) = Ne^{ik}$ of the free particle is an eigenfunction of the linear momentum operator \hat{p} . Find the average linear momentum for a particle in state $\psi(x) = Ne^{ikx}$. 10+10 (b) (i) Draw an energy diagram indicating the origin of fundamental, first overtone, 2 nd overtone and hot band in vibrational spectroscopy. (ii) Show the origin of the P, Q, and R branches in rovibrational spectroscopy. (a) Derive thermodynamic master equations and criteria of spontaneity from thermodynamic square. (b) Explain the distinctions between Maxwell-Boltzmann, Bose-Einstein, and Fermi-Dirac statistics. (a) Explain one of the approximate theories in quantum mechanics, either (i) perturbation theory or (ii) variation theorem.