Name:

Enrolment No:

UPES End Semester Examination, May 2024

Course: RIEMANN INTEGRATION AND SERIES OF FUNCTIONS Program: B.Sc. (H) Mathematics Course Code: MATH 3044 P Semester: VI Time : 03 hrs. Max. Marks: 100

Instructions: There are total 11 questions. Answer the questions in legible handwriting mentioning solutions to question number properly
SECTION A

	SECTION A (5Qx4M=20Marks)		-
S. No.		Marks	CO
Q 1	Justify with an example that a real function can be Riemann integrable over an interval but not continuous therein.	4	CO1
Q 2	If <i>n</i> is a positive integer, show that $2^{n}\Gamma\left(n+\frac{1}{2}\right) = 1.3.5(2n-1)\sqrt{\pi}.$	4	CO2
Q 3	Define (i) no where convergent power series, and (ii) everywhere convergent power series.	4	CO3
Q 4	Find the radius of convergence for the series of the functions given by $\sum_{n=0}^{\infty} \frac{x^n}{n!}$.	4	CO3
Q 5	For the sequence of functions $f_n(x) = \frac{x^2}{x^2+n}$ on the interval $[0, \infty)$, determine if it converges pointwise and/or uniformly.	4	CO4
	SECTION B (4Qx10M= 40 Marks) There is an internal choice in Q9		
Q 6	Evaluate $\int_0^3 \frac{1}{(x-1)^3} dx$. Show that the Beta function is symmetric in positive real variables x and y.	10	CO2
Q 7	For $\int_0^{\pi} tanx dx$, discuss the convergence of near the singularity at $x = \frac{\pi}{2}$.	10	CO3
Q 8	State Leibniz's rule for differentiation under the integral sign. Apply Leibniz's rule to compute the derivative of the integral $G(x) = \int_0^x \cos(tx) dt$ with respect to x.	10	CO4
Q 9	(i) Define a metric space citing a proper example. Find all metrics on a set X consisting of one point, and consisting of two points. Does $d(x, y) = (x - y)^2$ define a metric on the set of real numbers?	10	CO4

	OR				
	(ii) Define a metric space citing a proper example. Let d be a metric on X.				
	Determine all constants k such that (a) kd , and (b) $d + k$ is a metric on X.				
SECTION-C					
(2Qx20M=40 Marks)					
There is an internal choice in Q11					
Q 10	Investigate the convergence of the Beta function for varying parameter values α and β . Determine if there are any specific ranges of values for which the function converges more rapidly and slowly.	20	CO3		
Q 11	(i) Show that the sequence $\langle f_n = \frac{n^2 x}{1+n^4 x^2} \rangle$ does not converge uniformly on [0, 1]. (ii) Define the uniform norm. Using the uniform norm show that the sequence $G_n(y) = (\frac{y}{2})^n (1-y)$ for $y \in A = [0, 1]$ converges uniformly to $G(y) = 0$. State Cauchy criterion for Uniform convergence.	20	CO4		